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ABSTRACT 
 

Among all thermal energy storage (TES) systems, latent heat thermal energy storage 

(LHTES) attracts high interest due to its high energy density and high exergetic efficiency. Due to 

the high enthalpy of fusion and low cost, inorganic salts are becoming popular as phase change 

materials and are used as the storage media in LHTES systems. The main drawbacks for the 

inorganic salts are their low thermal conductivity and high reactivity above 500oC. Therefore, 

designing a cost-effective containment at these conditions with longevity is a challenge.   Macro-

encapsulation of the PCM is one way to solve both the PCM containment issue as well as the low 

thermal conductivity problem. However, finding a practically viable encapsulation technique is a 

challenge especially for temperatures above 500oC. 

In the present study, encapsulation techniques were investigated for two temperature 

ranges; 500oC – 600oC and 600oC above.  Metallic encapsulation was adopted for the 500oC – 

600oC temperature. Commercially available, low-cost carbon-steel tubes were used, and the 

encapsulation shape was cylindrical. A 200µm coating of Ni was applied to strengthen the 

corrosion resistance. For temperatures above 600oC, a novel approach involving the use of 

ceramic materials was investigated for encapsulating chloride based PCMs. Low-cost ceramics 

with excellent thermal and chemical stability under molten-salt conditions were identified as the 

encapsulants. The influence of sintering temperature on the reactivity of feldspar, ball clay, kaolin 

and the mixture thereof with molten sodium chloride was investigated. The results were used to 
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develop an optimum ceramic capsule fabrication procedure, using a green ceramic body followed 

by sintering at 1190°C. An innovative sealing process of in-situ layered eutectic formation was 

introduced. Sealing was performed at a temperature above the eutectic melting point of the salt 

mixture but below the individual melting points of each salt. The fabricated capsule survived 

more than 500 thermal cycles without showing degradation in its thermo-physical properties. 

Alumina (99%) based capsule containing NaCl-KCl was tested successfully for 1000 thermal cycles 

with a PCM weight loss of less than 5%. 

A lab-scale setup was designed and constructed to test an industry scalable LHTES system 

suitable for supplementing heat to a steam-powered cycle. Metallic cylindrical capsules were 

used with a eutectic of sodium sulfate (Na2SO4) and potassium chloride (KCl), which melts at 

515oC, as the PCM for energy storage. This system was modeled and validated with experimental 

measurements. The calculated ratio of exergy to energy efficiency was around 89% (for 380-

535oC). Flow irregularities were found due to a bend in the flow channel. Therefore, flow 

conditioners were investigated. A modified system with the flow conditioners and radiation 

shields showed 98% exergy to energy efficiency ratio (for 495-535oC).  The overall efficiency of 

the system, however, was found to be low due to the heat losses from the storage tank.  

Finally, a novel design of a TES system using spherical capsules is proposed with additional 

enhancement gained from the experimental work on the lab-scale LHTES system. The innovation 

of this design lies in the manufacturing process to forms multiple spherical capsules using sheet 

metals. The adoptability of this technique for higher or lower temperature LHTES applications 

depends on the properties of the selected sheet metal. Any formable sheet metal can be used 

depending on the compatibility with PCM and HTF.
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CHAPTER 1: INTRODUCTION 
 

Many renewable energy sources are restricted by their intermittent nature. In many 

cases, they are supplemented with non-renewable energy sources. For instance, solar thermal 

energy is limited by the sun’s availability. However, use of thermal energy storage (TES) can 

provide assurance and reliability for it to stand alone as a power source. With the growing global 

renewable energy generation, the need for low-cost thermal energy storage has become 

inevitable. 

Common types of TES technologies currently available include sensible heat thermal 

energy storage (SHTES) and latent heat thermal storage (LHTES)[1]. Kuravi et al. [2] gave a review 

of the technologies and systems for thermal energy storage in solar thermal power plants. LHTES 

is more attractive as it provides a higher energy density and, therefore, requires less storage 

material compared to SHTES [3–5]. Latent heat storage also has the capability to provide stored 

energy at a nearly constant temperature, which corresponds to the phase transition temperature 

of the phase change material (PCM) and results in maintaining high exergetic efficiency [6–9].  

Low-temperature TES, operating in a temperature range below 200oC, has been widely 

studied for building heating and cooling applications [10–12],  Hasnain et al. reviewed the 

advantages and disadvantages of most common thermal energy storage technologies for cooling 

and heating applications[13,14]. Sharma et al. discussed the use of  TES in solar cooking,  solar 

water heating, and air-heating applications [5]. 
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High-temperature TES can play a vital role in solar thermal power [15,16].  Use  of high-

temperature TES in waste heat recovery and hydrogen production was examined by Maruoka, N 

et al. [17] . Kuravi et al. [2] and Tian et al. [18] discussed the importance of integration of TES 

systems with concentrated solar power plants (CSP) and other renewable energy production 

technologies. A major part of research in this field is focused on identifying and characterizing 

new PCMs [19–22]. Kenisarin [23] investigated high-temperature phase change materials, 

ranging from 120˚C to 1000˚C, and discussed the compatibility of PCMs with encapsulation 

materials. Agyenim et al. [24] reviewed the progress of latent heat thermal energy storage 

systems over the last three decades by investigating various PCMs, heat transfer and 

enhancement techniques. Furthermore, they discussed the importance of geometry and 

configuration of the PCM container. Drawbacks of LHTES discussed here include low heat transfer 

properties of PCM and limitations in encapsulation at elevated temperatures [24]. 

One of the main concerns related to LHTES is its long charging and discharging times 

leading to inefficient energy retrieval and higher system losses. The main reason for this is the 

low thermal conductivity of  PCMs [23,25]. Many techniques have been proposed to improve the 

thermal conductivity of PCMs[25–29].  Inclusion of expanded graphite or carbon nanotubes in a 

PCM material can increase its thermal conductivity [30,31]. Micro and macro-encapsulation 

techniques also increase the heat transfer rate [32–34]. Alam et al. [34,35] tested a lab-scale 

packed bed system of spherical capsules for a temperature range of 286-326˚C. They used a 

polymer-based macro-encapsulation technique to form capsules of sodium nitrate PCM which 

melts at 306˚C. 
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Finding cost-effective yet reliable encapsulation techniques becomes difficult with the 

increase of operating temperature. Ceramics are quite efficacious in high-temperature 

applications as they are less prone to corrosion under high-temperature molten-salt conditions 

(hot corrosion) than metals and metal-alloys [36]. Even though ceramics provide high corrosive 

resistance, finding a cost-effective encapsulation technique is still challenging [37–40].  Metallic 

encapsulation with surface coating was found to be reliable and cost-effective for temperatures 

below 600˚C [40,41].  

Most of the experimental research has been done for low-temperature LHTES 

applications even though there is considerable focus on high-temperature range applications.  

1.1 TES Design Requirements 

The important parameters for the design of a TES system include, storage density, 

capacity, charging and discharging rates and efficiencies.  In order to design a smooth and 

efficient system, certain requirements must be fulfilled [42]: 

• Compatibility of storage medium in the operating temperature range 

• High energy density in the storage material  

• Good heat transfer between the heat transfer fluid (HTF) and the storage medium 

• Mechanical and chemical stability of the storage material 

• Compatibility of HTF, heat exchanger, and storage medium 

• Complete reversibility in charging/discharging cycles and no degradation of TES 

materials as well as equipment. 

• Cost effective system 

• Low system heat losses 
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• Ease of operation 

1.2 TES Material 

Depending on the energy absorption/ retrieval process of TES material, there are three 

forms of Thermal Energy Storage, 

 
Figure 1.1   TES categorization 

 

1.2.1 Sensible Heat Thermal Energy Storage (SHTES) 

 In a SHTES system, the storage material stores or releases heat while the material phase 

remains unchanged.  The energy storage capacity of a SHTES system depends on the total mass 

of the storage material, its specific heat and the temperature change in the material. SHTES 

technologies have been are the most common commercially available in the power plant sector 

[2].  Sensible heat TES media can be either liquid or solid. Specific energy, energy density, full 

cycle (round trip) efficiency, expected lifetime and cost are some of the key parameters in a 

SHTES system [43,44].   
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Molten salts are commonly used in SHTES for central receiver tower type of solar thermal 

power systems [45]. Molten salts, while being non-toxic and non-flammable, are compatible with 

the working temperatures of the present high-pressure power plants. The molten salts have 

received considerable attention other than solar power generation as they are already used in 

the chemical and metallurgical industries as heat-transfer fluids [46]. The most common 

commercially available salts is known as solar salt, 60% of NaNO3 and 40% of KNO3, that melts 

at 221oC [47].  Apart from the liquid phase materials, solids like concrete and ceramics have been 

widely studied due to their low costs, good thermal conductivities and moderate specific heats 

[48]. 

Even with some disadvantages, sensible heat materials are currently applied in solar 

thermal plant applications. Molten salts have a relatively high freezing point which limits their 

operating temperature  range in a system [49].  They require maintaining high outlet 

temperatures thus, high heat losses, and more expensive piping and materials. The sensible 

portion of thermal energy is rarely fully utilized due to the required temperature difference as a 

heat transfer driving force.  The low energy density of sensible heat materials results in large 

volumes or quantities of sensible heat materials and consequently, higher storage costs.  

1.2.2 Thermo-Chemical Heat Storage 

Thermo-chemical storage systems adopt a reversible endothermic/exothermic chemical 

reaction to store and release heat. The effective reversibility of the chemical reaction determines 

the efficiency of the system. The main advantage of thermo-chemical heat storage is its high 

energy density compared to other storage options.  SnOx/Sn and ammonia system have been 

mostly examined for chemical storage systems [50,51]. Regardless of its high energy density, 
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thermo-chemical heat storage is considered to be an expensive method as it is still in the initial 

stages of development. 

1.2.3 Latent Heat Thermal Energy Storage (LHTES) 

Latent heat thermal energy storage (LHTES) stores energy by absorbing or releasing the 

latent heat when a storage material undergoes a phase change. LHTES systems based on phase 

change materials (PCMs) with solid-liquid phase transition are considered to be more efficient in 

comparison to solid-solid and liquid-vapor transitions [28]. 

LHTES has attracted attention due to its advantages like high energy density, high 

exergetic efficiency, and moderate cost. Present examined uses of PCMs for thermal storage 

mainly involve low to moderate temperatures (below 300oC). Although the use of PCM in High-

temperature LHTES has been studied for solar power plant applications, it has not yet been 

commercially used [16,52].  

Most of the PCMs used in high-temperature LHTES have low thermal conductivities and 

as a result, exhibit low charging and discharging rates [25,27,53]. Therefore, new heat transfer 

enhancement techniques are needed to make LHTES commercially viable. 

There are three main components of a LHTES system[28],  

1. PCM suitable for the desired operating temperature range 

2. Encapsulation method for the PCM  

3. Heat exchanger (heat transfer mechanism between TES material and HTF) 

When designing a Latent heat TES system, the first step of the design stage is the selection 

of a suitable PCM. Characteristics and importance of PCM to the latent heat TES will be discussed 

in detail in the next chapter.   
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1.3 Research Objectives 

As mentioned in the earlier section, there is very little research on high-temperature 

range (above 500oC) LHTES systems. The main focus of this study is to examine and develop a 

LHTES system for high-temperature applications. A considerable amount of research has been 

done on PCMs [19–22], but insufficient work has been reported in the literature  on 

encapsulation techniques for the high-temperature range. Therefore, the objectives of this 

research are:  

1. Design and develop an encapsulation method for phase change materials used for 

high-temperature thermal energy storage (500oC above) 

2. Experimentally analyze the system performance of high-temperature thermal energy 

storage system 

The research challenge associated with the first objective is to fabricate a practically 

viable encapsulation technique for a high-temperature PCM. Volume expansion of high-

temperature PCM can be even over 20%. Careful selection of an encapsulation material is 

important along with the method of encapsulation for the stability and durability of the PCM 

storage system. 

It is evident from the past studies that most of the experimental work on LHTES has been 

carried out for low temperature PCMs (0-60oC) [24]. There is hardly any experimental data for 

LHTES system over 500oC.  The second objective focuses on the testing and evaluation of a lab-

scale LHTES system for applications over 500oC. The research challenge of this objective was 

minimizing the system losses and neutralizing the flow imbalances inherent to a compact lab-

scale arrangement and to overcome uneven heating and cooling inside the TES system. 
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In chapter two, a literature review of heat transfer enhancement techniques and 

encapsulation methods are discussed. Phase change materials and their advantages are also 

discussed briefly in the chapter.  

Chapter three investigates the encapsulation of PCMs and compatibility of ceramic as a 

shell material. Chapter three also provides a discussion on the dependency of the porosity and 

reactivity on the sintering temperature, capsule sealing and metal encapsulation. A novel 

approach to the sealing of eutectic mixtures is presented and experimentally validated.  

Chapter four discusses the construction of a lab-scale LHTES system with cylindrical PCM 

capsules and experimental study of its performance at high temperature operating conditions. 

Radial and axial temperature variations are analyzed. The energy and exergy efficiencies of the 

system are calculated, and heat transfer issues are addressed.  

In chapter five, a novel method is proposed considering the heat transfer as well as 

manufacturability. In addition, potential manufacturing techniques are discussed. Finally, 

conclusions based on the design and experimental study and recommendations for further study 

are summarized in chapter six. 
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CHAPTER 2: IMPORTANT PARAMETERS FOR LATENT HEAT THERMAL ENERGY STORAGE 
 

Design of a LHTES system is based on the type of application, storage capacity, energy 

storing/extraction effectiveness and cost. Selection of a phase change material (PCM) as the 

storage medium plays a key role in the design of a LHTES system. Since the research is on 

encapsulated PCM storage, materials and method of encapsulation are also key parameters. Even 

though each parameter has its own selection criteria, the interaction and the compatibility of 

one another was considered in the design. Key parameter and their selection criteria are 

discussed in detail based on a review of the literature in this chapter. 

2.1 Phase Change Materials (PCMs) 

A PCM at first acts similar to sensible heat storage materials until its temperature 

increases to its phase change temperature, however, the amount of sensible heat stored is small. 

The main portion of the energy is stored in the phase change period, making the latent heat 

component significantly larger than the sensible heat portion. 

The focus of this research is on solid-liquid transition system as liquid-gas or solid–gas 

phase transition is limited in TES systems due to the large volume changes associated with the 

phase transition [28]. These PCMs can be divided into organic materials and inorganic phase 

change materials [54].  
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2.1.1 Organic and Inorganic PCMs 

In general, inorganic PCMs have higher latent heat energies as compared with organic 

materials, therefore, show higher storage capacity per unit volume. Thermal conductivity is 

comparatively better in inorganic materials and can get high operating temperatures because of 

the usually high phase transition temperatures. Inorganic PCMs are cheaper compared to organic 

PCMs [27]. However, there are some shortcomings with inorganic PCMs that need to be 

addressed. Inorganic PCMs are typically corrosive, especially to metals, thus leading to a short 

service life of the system [55]. Other problems with inorganic PCMs include phase segregation 

and supercooling, that can reduce the effectiveness of the TES system [56]. However, metals and 

metallic alloys show no phase segregation or  supercooling and are suitable for high-temperature 

applications [57]. Containment is one of the key issues with metals as the volume changes on 

phase change can be fairly large in comparison with non-metals. Zalba et al. [58] highlighted the 

advantages and disadvantages of organic and inorganic PCMs as shown in Table 2.1. 

Table 2.1  Advantages and disadvantages of PCMs [58] 
  

    Inorganic PCMs 
 
     Organic PCMs 

 
 

Advantages 

• Greater phase change 

enthalpy 

• Non-corrosive  

• Low supercooling 

• Chemical and thermal stability 

 
 
 

Disadvantages 

• Supercooling 

• Corrosion 

• Phase segregation 

• lack of thermal stability 

• Low thermal conductivity  

• Flammability 

• Lower phase change enthalpy 
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2.2 Method of PCM Containment 

To ensure a long lasting and efficient LHTES system, the method of PCM containment is 

critical. PCMs are typically placed in cylindrical [24,59,60]  or rectangular shaped containers 

[24,61] . The most analyzed LHTES arrangement is the shell and tube configuration[62–65]. 

The method of PCM containment has a direct impact on the heat transfer rate of the 

overall system, thus affects the charge and discharge times and the thermal performance of the 

LHTES system. Appropriate PCM container geometry coupled with the right heat enhancement 

technique can provide a better overall performance for the LHTES system. 

2.2.1 Heat Enhancement Techniques for LHTES 

As stated earlier, most PCMs, except metals or metal alloys, have low thermal 

conductivity and as a result, would lead to slow charging and discharging rates. Thermal 

conductivity of non-metal PCMs usually falls below 0.6 W/m.K range [18,58]. Initial melting of a 

PCM in the charging cycle enables a natural convection driven process, thus making it 

comparatively faster than the discharging process [66].  The impact of having low thermal 

conductivity is prominent during the solidification process as it forms a solid layer at the inner 

surface of the capsule, thus making it a conduction driven process. Agyenim et al.[24] listed 

several techniques to improve the heat transfer rate for LHTES systems. Figure 2.1 shows the 

drawings and pictures of some of the heat transfer enhancement techniques that were reviewed 

in this study.  
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Figure 2.1   Various heat transfer enhancement techniques [16] (with permission) 
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Ibrahim et al. [67] separated the enhancement techniques into three categories and 

reviewed the recent developments in each category.  

Table 2.2  Thermal enhancements for  LHTES [67] 

 
 

Out of all the techniques, the most popular enhancement technique is the use of 

extended surfaces such as fins.  

2.2.1.1 Use of Fins 

Due to the simplicity, low cost and ease of fabrication, a majority of the heat 

enhancement techniques have been based on fins. Fins are typically used to increase the 

effective heat transfer area between HTF and PCM and therefore enhance the thermal 

performance of TES system. 

Thermal conductivity, corrosion potential with HTF/PCM, cost and density are usually the 

crucial parameters when it comes to the selection of fin materials [27]. Materials like aluminum, 

copper, and graphite foil are selected primarily for their high thermal conductivity (over 100 

W/m.K), and materials like carbon steel are selected due to their low cost. Stainless steel is also 

used as a fin material because of its corrosion resistance [27]. 

Heat transfer 
enhancement 

Thermal conductivity 
enhancement 

Combined techniques for 
heat transfer enhancement 

• Embedded fins 
 

• Heat Pipes 
 

• Multiple PCMs 
 

• Encapsulation 

• Dispersion of high 
conductivity nanoparticles 
 

• Porous materials 
 

• Low-density, high 
conductive materials 

• Finned heat pipes 

 
• Combined heat pipe-

metal foil 
 

• Fins with multiple PCMs 
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Several studies have been done on fins of different configurations in LHTES systems. There 

are two standard configurations of fins in LHTES systems [67]:  

1. Systems that involve heat storage and retrieval through a HTF 

2. Systems that serve as a heat sink/reservoir through hot/cold boundary wall 

In heat sink type-LHTES (no HTF), the fins are located inside the PCM. Even with the HTF, 

the fins are usually embedded in the material with the lower relative thermal conductivity, which 

in most cases is the PCM side [68]. 

Compared to other enhancement techniques, the amount of experimental studies carried 

out for fins is significant. Table 2.3 summarizes some of the experimental studies carried out for 

LHTES systems. 

Table 2.3 Studies of heat transfer enhancement with fins  

Fin geometry System 
geometry 

Fin 
material Notes Ref 

Rectangular Cylindrical Aluminium Solidification time was inversely 
proportional to the number of fins. [69] 

Rectangular Rectangular Steel Close to 40% decrease in solidification 
time compared to the base case. [70] 

Rectangular Rectangular Aluminium 
alloy 

Increasing the fin height and number 
of fins increased the thermal 
performance of the system. 

[71] 

Rectangular Shell and 
tube Copper Fin length gives higher PCM charging 

rate. [63]  

Rectangular  Shell and 
tube Brass 

12.5%(inlet at 80oC) and 24.52%(inlet 
at 85oC) decrease in melting time 
compared to the base case. 

[72] 

Rectangular 
Rectangular 

shell and 
tube 

Aluminium 

Increase in flow rate reduced both 
melting and solidification time 
whereas this drop is more significant 
for the melting than solidification. 

[73] 
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Table 2.3 (continued) 

Rectangular 
Triplex 

concentric 
tubes(TTHX) 

Copper 

Melting time  was decreased by 
34.7% for the highest number of fin 
configuration compared to the base 
case. 

[74] 

Rectangular TTHX Copper 

Solidification time was decreased by 
35% highest number of fin 
configuration compared to the base 
case. 

[75] 

Rectangular TTHX Copper 
The internal-external fin arrangement 
decreased the melting time by 43.3% 
compared to the base case. 

[76] 

Circular Cylindrical 
tube 

Stainless 
steel 

Heat transfer coefficient was doubled 
with the use of thick-finned 
arrangement. 

[77] 

Circular Shell and 
tube Bronze 

The amount of stored energy 
increases with the increase in fin 
radius and decrease in fin space. 

[78] 

Circular/longitudinal Cylindrical 
tube Copper 

Enhancement of the heat transfer 
rate was high in longitudinal fin 
arrangement compared to the circular 
fin arrangement. 

[79] 

Spiral Cylindrical 
tube Copper 

Thermal conductivity improvement 
was three times high compared to the 
base case. 

[80] 

 

All the fin arrangements described in the literature have used metallic PCM containers. 

Therefore, the tested operating temperatures were below 600oC. 

2.2.1.2 Use of Heat Pipes 

A heat pipe (HP) can deal with high heat transfers as its operation involves phase change 

(evaporation and condensation). Some researches analyzed the improvement in charging and 

discharging processes of PCM with the use of HP [81–87]. Gravity assisted and wick assisted are 

some of the common types of heat pipes.  Operating temperature range, geometric size, and 

configuration of the TES system are some of the key parameters for the selection of HPs for TES 
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systems. One typical configuration of storage systems that can adopt HPs for heat transfer 

enhancement is the shell and tube type TES. 

A large number of numerical studies were carried out on analyzing the effect of HP 

configuration, orientation, and number of HPs on the thermal performance of LHTES systems, 

but the experimental studies were limited [81–83,85,87]. Robak et al. [84] experimentally 

compared the effect of HP and fins in a LHTES system and found that the overall melting rates 

for the heat pipe systems were, on average, 70% greater than the non-HP setup and 50% greater 

than the system with fins.  Tiari et al. [88] used a primary central heat pipe with an array of 

secondary heat pipes for a PCM containing vertical cylindrical type container. Both melting and 

solidifying behaviors were analyzed with the use of photographic images as well as internal 

temperature measurements. Increasing the incoming hot HTF flow rate from 1.89 L/min to 

7.57 L/min led to a 30% improvement in the charging process. Increasing the temperature of the 

incoming HTF from 63 °C to 73 °C during charging resulted in 55% reduction in the system’s 

charging time. Both of the experimental works mentioned above are for low temperature 

applications. No experimental studies have been reported in the literature for high temperature 

applications using this technique. 

2.2.1.3 Multiple PCM Systems 

Having multiple PCMs in a LHTES system enables a nearly constant heat flux throughout 

the passage between the HTF and the PCMs. This arrangement improves the heat transfer of the 

overall system. Several PCMs of different melting temperatures are arranged in a decreasing 

order of their melting temperatures along the HTF flow direction during the charging process. 

The HTF flow direction is reversed during the discharging process moving the HTF through PCMs 
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in increasing order of their melting points which enables a nearly constant heat transfer rate from 

the PCM to HTF [66].   

Table 2.4 summarizes some of the numerical and experimental studies of multiple PCMs 

in LHTES systems. It is evident that using multiple PCMs was beneficial when the difference 

between the charge and discharge temperatures increased. 

 Table 2.4 Studies of multiple PCMs in LHTES systems 
PCM 

containment 
Nature of 

work 
No. of 
PCMs 

Notes Ref 

Cylinder 
tubes 

Numerical 5 30-35% improvement in charge-discharge rates 
were attained for six different operating 
temperature ranges. 

[89] 

Cylindrical 
tube 

Numerical 3 The proposed method can improve the receiver 
performance in a solar dynamic power system 
and  decrease the fluctuation of HTF 
temperature. 

[90] 

Shell and 
tube 

Numerical 4 The selection of PCM fractions and their melting 
temperatures are important for the performance 
improvement. 

[91] 

Shell and 
tube 

Numerical 2 Using multiple PCMs increased the heat transfer 
rate by an average of 57%. 

[62] 

Rectangular 
slabs 

Numerical 3 The LHTES was used for air conditioning and 
higher COPs were obtained for shorter and 
thinner PCM slabs 

[92] 

Rectangular 
slabs 

Numerical 2 The LHTES was used for air conditioning and 
higher COPs were achieved for higher inlet 
temperatures, while higher exergy efficiencies 
were achieved for lower inlet temperatures. 

[93] 

Shell and 
tube 

Experimental 2 An average improvement of 19.36% was 
obtained in comparison with the single PCM 
arrangement. 

[94] 

Cylindrical 
capsules  

Experimental 3 The amount of stored energy increased by 15%.  [95] 

Cylindrical 
capsules 

Experimental 3 Melting time reduction of 37–42% was obtained 
compared to the single PCM LHTES system. 

[96] 
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Experimental studies of multiple PCMs in LHTES systems are limited in the literature.  

Farid et al. [95] constructed an experimental setup to test three different wax type PCMs (melting 

temperatures of 44°C, 53°C, and 64°C). They reported a 15% improvement with the multiple PCM 

configuration during the latent heat period. Peiro et al. [94] tested a cascaded system for a 

temperature range of 150-200oC. Hydroquinone, melting range of 165- 172oC, and d-Mannitol, 

melting range of 155-162oC were used as PCMs. The system with two PCMs arrangement showed 

a higher consistency in the HTF temperature change between the inlet and outlet. An average 

overall enhancement of 19.36% was obtained in comparison with the single PCM arrangement.  

2.2.1.4 Dispersion of High Conductivity Nanoparticles 

Dispersing nanoparticles in a PCM is one of the simplest and most effective ways to 

enhance its thermal conductivity [97]. Table 2.5 summarizes some of the experimental studies 

on thermal conductivity improvement of PCMs containing nanoparticles.   

Table 2.5 Studies of nanoparticles use in PCM systems 
Nanoparticle  PCM type Notes Ref 

Aluminium powder Paraffin The charging duration was reduced by 
close to 60% for the mixture compared to 
the pure paraffin. 

[98] 

Al2O3 nanoparticles n-octadecane The natural convection heat transfer in the 
melted region degraded  with the increase 
of  nanoparticles. 

[99] 

TiO2 nanoparticles n-octadecane The maximum improvement happened at 
3 wt% of nanoparticles in the mixture. 
Increasing over 4 wt%  reduced the thermal 
conductivity in the liquid phase. 

[100] 

Carbon 
nanotubes(CNTs) & 

nanofibers(CNFs) 

Paraffin and 
soy wax 

 The enhancement of thermal conductivity 
is high in CNF mixtures in contrast to CNT 
mixtures. 

[101] 
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Table 2.5 (Continued) 
CNT Palmitic(PA)–

stearic 
acid(SA) 

The thermal conductivity was increased by 
close to 20%, 26%, 26% and 30% for the 
CNT mass fractions of 5 wt%, 6 wt%, 7 wt% 
and 8 wt% respectively.  

[102] 

Single and multi-walled 
carbon nanotubes 

Paraffin A highest enhancement of close to 13% was 
achieved for the PCM containing single-
walled carbon nanotubes. 

[103] 
 

Multi-walled carbon 
nanotubes(MWCNT) 

Palmitic acid Thermal conductivity improvement was 
36% in the solid state and 56% in the liquid 
states for the mixture of 5 wt% MWCNT 
and PCM. 

[126] 

MWCNT Paraffin Thermal conductivity improvement was 
35% in the solid state and 45% in the liquid 
states for the mixture of 2 wt% MWCNT 
and PCM. 

[104] 

MWCNT/graphite Paraffin MWCNTs were more effective compared to 
graphite as a thermal conductivity 
enhancer. 

[105] 

MWCNT/CNF/graphene 
nanoplatelets(GNPs) 

Paraffin PCM with GNPs showed the highest 
thermal conductivity enhancement of 164% 
at 5 wt%. 

[106] 

GNPs Lauric acid The thermal conductivity improvement by 
GNP(1 vol%) was close to 230% compared 
to the base case.  

[107] 

Cu nanowires Tetradecanol The overall thermal conductivity increased 
with the increase of Cu nanowires 

[108] 

CuO nanoparticles KNO3/NaNO3/ 
KNO3-NaNO3 

eutectic 

Substantial improvements in thermal 
conductivity were achieved for both the 
eutectic salt and pure nitrate salts with the 
addition of nanoparticles. 

[109] 

 

The literature on experimental studies with nanoparticles on high-temperature LHTES is 

limited [96,109–113]. Myers et al.[96,114] analyzed the possibility of enhancing radiative heat 

transfer with a dispersion of infrared radiation (IR) absorbing particles in high-temperature 

http://www.sciencedirect.com/science/article/pii/S1364032117301739?via%3Dihub#bib126
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molten salt applications. They considered CuCl, CoCl2, FeCl2, and NiCl2 as additives for the NaCl-

KCl eutectic mixture, which has a melting temperature of 657oC. Their study showed that the IR 

range absorption in the PCM was increased due to the additives.  

2.2.1.5 Enhancement with Porous Materials 

Several studies have been done on thermal conductivity improvements by impregnation 

of PCMs into porous conductive materials [115–120].  Having a porous material with high thermal 

conductivity makes the overall thermal conductivity of the PCM-porous material combination 

higher than the pure PCM [119].  Aluminum foam and expanded graphite (EG) are widely used 

as porous materials to increase the thermal conductivity of PCMs. The improvement is mainly 

due to their high thermal conductivities and relatively low or medium densities [67]. A quite a  

few experimental studies were done on PCM-porous material composite systems, some of which 

are shown in Table 2.6.  

Table 2.6 Studies of heat transfer enhancement by porous materials 

Porous material PCM material Notes Ref 

Graphite matrix Paraffin Thermal conductivity of the composite matrix 
was 20 times greater than that of the pure PCM. [119] 

Aluminium foam Paraffin 
The inclusion of aluminum foam decreased the 
discharging duration by 42.42% and charging 
duration by 15.37%. 

[121] 

Graphite foams 
(GFs) Paraffin 

Thickness of ligaments and pore size of the foam 
are significant parameters in improving the 
thermal diffusivity and the storage capacity of 
the system. 

[122] 

Expanded 
graphite (EG) Paraffin Thermal conductivity was increased with the 

increase of mass fraction of EG(2-10%).  [123] 

Compressed 
expanded 

natural graphite 
(CENG) 

Paraffin 
Thermal conductivity improvement of the 
paraffin/CENG composite was more than 28 
times of the pure paraffin. 

[124] 
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Table 2.6 (Continued) 
Copper porous 

foam (CPF) 
Eicosane 
(C20H42) 

Thermal conductivity was increased from 
0.423 W/mK to 3.06 W/mK. [125] 

Copper, steel 
alloy and EG NaNO3 

Compared to the pure PCM, heat transfer rate 
was doubled during the solid phase but remained 
almost same in the liquid phase due to the 
weakening of natural convection 

[126] 

Copper foam, 
copper-steel 
alloy and EG 

NaNO3 heat transfer was improved by foams of copper 
and copper-steel alloy as well as EG. [127] 

EG 
LiNO3–KCl, 

LiNO3–NaNO3, 
LiNO3–NaCl 

Substantial improvements of thermal 
conductivity were achieved  for the eutectic 
mixtures. 

[128] 

Copper foam, 
Nickel foam NaNO3-KNO3 

Inclusion of metal foam reduced the natural 
convection of the PCM composite mixture 
compared to the pure PCM system. 

[129] 

 

Most of the studies have been done on low-temperature applications. But the noticeable 

thing is the improvement in discharging time due to the solid phase thermal conductivity 

improvement. Natural convection was usually prominent during melting in the case of pure 

molten salt but it was weakened by the use of metal foams or porous materials. Therefore, the 

charging time improvement was negated due to the increase in the discharge time in many cases.  

2.2.1.6 Dispersion of Low-density Materials 

Metal particles are usually denser than the PCM and as a result distributing them in the 

PCM is hard. The enhancement expected from these metal particles would be hindered by having 

these particles settled at the bottom of the PCM container. One alternative technique is to use 

low-density high conductivity particles. Carbon fiber is one such substitute for high-density metal 

particles. Carbon fiber has relatively low density, and its thermal performance is in the same 

range as copper and aluminum [66]. 
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Fukai et al. [130] experimentally tested the improvement of thermal conductivity in a 

carbon fiber-paraffin system. Carbon fibers were tested for two orientations; random and brush 

type. The brush type gave the best performance and it was found that the effect of fiber length 

on the thermal performance was minimal. Hamada et al. [131]  tested the effects of carbon-fiber 

chips and carbon brushes in low-temperature n-octadecane PCM system and found that heat 

transfer improvement for the carbon brusher was higher than the fiber chips arrangement.  

Like in the earlier cases, a majority of the studies were focused on the low-temperature 

applications.  

2.2.1.7 Combined Techniques for Heat Transfer Improvement  

The approach of combining two or more heat transfer techniques to achieve more 

enhancement in the overall thermal performance has become more popular in the recent past. 

Table 2.7 shows some of the experimental studies of combined heat transfer technique used in 

LHTES systems. 

Table 2.7 Studies of combined heat techniques in LHTES systems 

Combined methods  System 
geometry Notes Ref 

Fins & heat pipe(HP) 

Rectangular 
heat pipe 

heat 
exchanger 

The rate of energy retrieval from the PCM was 
increased by 86% and the effectiveness of HP 
was increased by 24%. 

[132] 

Fins & HP 

Rectangular 
heat pipe 

heat 
exchanger 

The amount of energy stored was increased 
by 140% in the 12-HP configuration compared 
to the base case. 

[133] 

HP & metal foil Cylindrical 
enclosure 

Melting and solidification rates were doubled 
in contrast to the HP only system. [134] 
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Table 2.7 (Continued) 

Copper form & fins Rectangular 
container 

The thermal conductivity improvement  was 
3.7 times that of the system without fins. [135] 

HP & metal foam, HP 
& metal foil 

Cylindrical 
enclosure 

High melting and solidification rates were 
achieved with both HP with foil arrangement 
and HP with foam arrangement.  

[136] 

Macro-encapsulation 
& foam, 

Macro-encapsulation 
& sponge 

Cylindrical 
capsules 

The effective conductivity improvement with 
foam was 15%  and with sponge was 32%. 

[137]  

 

This area of research is still developing, and so far a majority of the studies have been 

focused on finned-HP type enhancements. The combination of encapsulation with IR absorbing 

particles [96] was investigated and later adopted in this study to further improve the heat 

transfer of encapsulation. 

2.2.2 Encapsulation 

Encapsulation can overcome the low thermal conductivity of a PCM by reducing the path 

length and increasing the surface area for heat transfer. Encapsulation is typically done by 

covering the PCM with a suitable coating or shell material [33].  The use of proper encapsulation 

has the following advantages [138,139]: 

• Enhancement of heat transfer rate by increasing the effective surface area 

• Isolation of the PCM from HTF and the container vessel. 

• Potential for greater exergetic efficiency with the use of a cascaded PCM arrangement 

• Enhancement in thermal and mechanical stability of the system 

• Reduction in tankage cost  
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 Encapsulated phase change materials (EPCM) are small capsules with the PCM in its core 

[140]. Different shapes and sizes of EPCM have been adopted for different applications. Based 

on size, encapsulated PCMs can be classified into the following: 

• Nano-encapsulation (0-1000 nm) 

• Micro-encapsulation (1-1000 μm) 

• Macro-encapsulation (above 1 mm) 

Thermo-mechanical stability of the encapsulation and PCM is very important considering 

thermal cyclic loads that are typically associated with LHTES applications.  Compared to macro-

EPCM, nano-EPCM and micro-EPCM PCMs usually provide higher heat transfer rates in the 

charging and discharging cycles. However, the lower PCM-to-shell mass ratio significantly 

reduces the energy storage density, thus increasing the storage cost [141]. 

Substantial work has been done on EPCM for lower temperature applications (less than 

300oC).  Thermal performance, stability and manufacturability of micro-EPCM and nano-EPCM 

were studied for low temperature applications [142–145]. Most of the studies on high 

temperature applications were based on macro-encapsulation.  Table 2.8 shows some of the 

experimental studies of macro-encapsulation for LHTES systems operating in the temperature 

range of 300oC or above.  

In a recent study, Fukahori et al. [146] used a ceramic (alumina) as the encapsulation 

material for an application in the temperature range of 400-650oC. They used an aluminum and 

silicon (25 wt%) mixture as the PCM which melts at 577oC. An alumina (Al2O3) cup of one inch 

diameter, was sealed by slightly overlapping a cap also composed of alumina. A thin aluminum 

film with a thickness of 10μm was placed around the part of the cup where it would be in contact 
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Table 2.8  Experimental studies of macro-encapsulation for LHTES systems 

Encapsulation  
PCM Operating 

range Notes Ref 
Shape Material 

Spherical Polymer 
NaNO3, 
KNO3-
NaNO3 

200oC  - 
330oC 

Capsules were tested for over 
1000 cycles with no degradation 
and weight loss. 

[34,35] 

Cylindrical Silica NaNO3 300oC -
500oC 

Nonuniformity of coating 
resulted in capsule failure 
before 10 thermal cycles. 

[147] 

Cylindrical Stainless 
steel 

NaNO3, 
NaCl–
MgCl2 

350oC -
500oC 

For a 100oC temperature 
difference, the latent heat of 
phase change contributed 57% 
and 75% to storage capacity for 
NaNO3 and NaCl–MgCl2 
respectively. 

[148] 

Cylindrical Alumina 
Aliminum-

25wt% 
Silicon 

400oC -
650oC 

The capsules successfully 
survived for 100 thermal cycles. [146] 

Spherical chromium 
and nickel Copper 1050oC -

1150oC 

The capsules successfully 
survived for 1000 thermal 
cycles. 

[41] 

 

with the cap. After placing the cap over PCM filled cup, the capsule was heated to over 660oC to 

melt the aluminum and seal the capsule. Phase change volume expansion was discussed and 

provisions were made to overcome the issue. However, the solid state expansion of the shell 

(silica) and the PCM, which is considerably high for aluminum, were not discussed. No leakage 

was reported for 100 thermal cycles (400-650oC). 

Another high temperature range EPCM study was done by Zheng et al. [41]. They 

fabricated spherical capsules of 2mm diameter with copper as the PCM. Shell material was made 

from a combination of chromium and nickel, which were electroplated to a thickness of 100 μm 
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and 500 μm respectively. The capsules successfully survived 1000 thermal cycles. Both Fukahori 

et al. [146] and Zheng et al. [41] reported thermal cyclic durability, but did not consider the cost 

of encapsulation material or process.  
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CHAPTER 3: ENCAPSULATION OF PHASE CHANGE MATERIALS 
 

3.1 Phase Change Material Selection 

The selection of a PCM for TES application depends on many factors. Studies on a wide 

range of organic and inorganic PCMs have highlighted certain desired characteristics for efficient 

latent heat TES systems [5,28,58]. These characteristics are as follows: 

• Melting temperature appropriate for the operating temperature range. 

• High  enthalpy of fusion 

• High density 

• High specific heat (both in solid and liquid state) 

• Small volume change 

• Low vapor pressure during the liquid state 

• High thermal conductivity 

• Congruent melting to avoid segregation of  components (binary or ternary systems)  

• Chemically stable, non-corrosive 

• Non-toxic and non-flammable. 

• High availability and low cost. 

• No supercooling 

The phase transition temperature of the PCM must match the operating temperature for 

the desired application. High enthalpy of fusion and high density would provide a high energy per 
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volume of PCM material. This minimizes the size of the storage containers and the amount of 

PCM used. A higher specific heat would increase the sensible energy portion of the storage, and 

a high thermal conductivity would reduce the charging and discharging times [149]. 

The small volume expansion during phase transition is necessary for designing simpler 

and more cost-effective containment or encapsulation methods. Low vapor pressures reduce the 

contamination and ease the encapsulation process. To prevent irreversible segregation, the 

PCMs must melt congruently.   

Supercooling interferes with the extraction of energy and is very common in salt-

hydrates. It is essential to minimize the supercooling effect as much as possible in thermal cyclic 

operations to get the best out of the discharge cycle [150]. The selected PCM should display a 

good chemical stability and corrosion resistance. PCMs can also degrade as a result of 

crystallization due to water loss, decomposition or chemical reactions with the containers. 

Toxicity and flammability must be considered for safety measures, and finally, the commercial 

availability and cost should be evaluated since the final TES system must be cost-effective and 

comparable with existing storage systems. 

The operating temperature range considered for this research is above 500oC. Chloride 

based salts are potential materials to meet the higher operating temperature requirements 

mainly because they are likely to have higher melting temperatures. Furthermore, many chloride 

salts are comparatively low cost compared to corresponding nitrates, carbonates and fluorides 

[114,151]. Table 3.1 shows some of the cost and thermophysical data for pure and eutectic 

chloride salts screened by Myers et al. [152]. The table includes only the salts that have melting 

temperatures higher than 500oC and cost less than $0.10 per kilojoule (stored energy). 
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Table 3.1   Cost data and thermophysical properties for pure and eutectic salts [152] 
Pure or eutectic salt Cost (USD/kJ) Cost 

(USD/kg) 
Tmelting  (oC) ΔHfusion 

(kJ/kg) 

NaCl 0.01 4.76 801 482 

KCl-NaCl 0.02 7.56 657 360 

MgCl2 0.02 8.00 714 453 

MgCl2-NiCl2 0.03 11.18 692 443 

KCl 0.03 9.80 771 353 

CaCl2-KCl 0.04 10.66 600 267 

CaCl2-NaCl 0.04 9.89 504 265 

NaCl-NiCl2 0.04 15.52 573 385 

CaCl2-KCl 0.05 11.88 641 237 

CaCl2-NiCl2 0.05 14.79 719 276 

KCl-NiCl2 0.05 16.41 513 303 

LiCl-MgCl2 0.05 21.56 571 418 

CaCl2 0.05 12.38 775 253 

BaCl2-KCl 0.06 10.92 656 181 

BaCl2-MgCl2 0.06 10.49 559 176 

BaCl2-NaCl 0.06 9.85 651 163 

CrCl3-KCl 0.06 18.35 700 330 

LiCl-NiCl2 0.07 31.32 620 450 

LiCl 0.07 34.00 610 467 

BaCl2-KCl 0.08 11.32 649 135 

CoCl2-MgCl2 0.08 32.86 709 412 

CrCl3-NaCl 0.08 26.32 593 351 

BaCl2-CaCl2 0.09 12.18 608 131 

CaCl2-MnCl2 0.09 19.49 587 220 

LiCl-MnCl2 0.09 28.50 574 334 

 

Considering the commercial availability, low cost, high enthalpy of fusion and melting 

temperature, three inorganic salts were selected as PCMs for this study (Table 3.2).   
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Table 3.2   Selected inorganic PCM with melting point above 500oC 

Phase Change Material Melting Point 
 (oC) 

Latent Heat of fusion 
(kJ/kg) 

NaCl 801 482 

NaCl-KCl 657 360 

Na2SO4-KCl 515 197 

*Measured in CERC, University of South Florida 

The downside of these chloride salts is their corrosiveness in their molten state [153]. 

Therefore, containing these salts is a challenging task. One of the main objectives of this research 

was to identify materials and procedures to encapsulate these chloride based PCMs and 

overcome this difficulty.  

3.2 Encapsulation Material Selection 

When designing a LHTES system using EPCMs it is vital to ensure that the encapsulation 

of PCM should meet the requirements of strength, flexibility, thermal stability and corrosion 

resistance apart from its main feature of providing additional surface area for heat transfer. The 

best shell material for EPCMs should have the following properties[138]: 

1. Adequate thermo-mechanical properties to withstand the phase change process and 

volume expansions of PCM 

2. Consistent thermophysical properties 

3. Leak-proof with the corresponding PCM 

4. No reaction with the PCM or HTF 

5. High thermal conductivity to enhance the heat transfer between the PCM and its 

surrounding. 
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In the literature, most common materials used for encapsulation are polymer-based 

materials. That is because the considered applications were low temperature based.   Since our 

focus is on high-temperature applications and the PCM we selected are inorganic salts, these 

polymer-based encapsulation materials are not appropriate.  

Depending on the operating range and PCM, following selections were made. 

1. For temperatures over 600oC, NaCl and NaCl-KCl eutectic were selected as PCMs and 

ceramic materials were selected as the encapsulation material. 

2. For 500-600oC temperature range applications, Na2SO4-KCl mixture as the PCM  was 

selected as the PCM and Ni-coated carbon steel was selected as the encapsulation 

material.  

These selections were based on their commercial availability and compatibility with 

fabrication. This selection of materials and encapsulation process are very interdependent 

processes.  

3.3 Encapsulation Using Ceramic Materials 

Ceramic materials can be adopted for both low and high-temperature applications, but 

are more effective in high-temperature applications as they are less prone to corrosion. 

Furthermore, ceramics have shown higher corrosion resistance with molten-salt conditions (hot 

corrosion) than metals and metal-alloys [21]. However, they are inherently porous in nature, 

which could be detrimental for encapsulation as molten salts normally seep through pores. 

Porosity also influences chemical and mechanical properties such as compressive strength, 

thermal diffusivity, and hardness of the ceramic materials [22]. For example, thermal diffusivity, 

which is important for the present application, decreases with an increase in porosity [23].  
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We have analyzed the influence of sintering temperature on the porosity and reactivity 

of the selected ceramic mixture comprising feldspar (KAlSi3O8), kaolin (Al₂Si₂O₅(OH)₄), ball clay 

(Al2O3. 2SiO2.2H2O) and silica (SiO2). This was done to find the right ceramic composition and 

sintering temperature for the ceramic capsules.  

3.3.1 Material Preparation and Instruments for Testing 

A mixture of feldspar, ball clay, kaolin, and silica was used for this study because of the 

easy availability and low cost of these ceramic components[154]. Feldspar lowers the sintering 

temperature of ceramics. However, a higher amount of feldspar in the ceramic mixture causes 

workability and molding issues while shaping a green body (ceramic body before the sintering 

process). An optimum ceramic composition, feldspar (50%), kaolin (16.67%), 16.67 ball clay 

(16.67%), silica (16.67%), was selected after several experiments. The composition was selected 

based on easy workability and molding of wet ceramic paste, lower rejection rate (cracks in the 

body) at the green and high-temperature sintering stages, and lower sintering temperature and 

duration when compared with other ceramic materials such as alumina. 

Feldspar, Ball clay, Kaolin, Silica were obtained from Axner, USA.  Sodium chloride and 

potassium chloride were obtained from Sigma-Aldrich, USA. Selected ceramic components were 

mixed in a requisite proportion by using a speed mixture machine (FlackTek). The differential 

scanning calorimetry (DSC) analysis was carried out using the SDT-Q 600 by TA instruments which 

can simultaneously perform DSC and thermogravimetric analysis (TGA). Based on metal melting 

standards, the heat flow, temperature and weight accuracy of this device are ±2%, ±1oC and ±1%, 

respectively. All the DSC analyses were performed at a ramp rate of 20oC/min under an argon 

(inert) atmosphere. The Fourier-transform infrared spectroscopy (FTIR) analysis of ceramic 

https://en.wikipedia.org/wiki/Potassium
https://en.wikipedia.org/wiki/Potassium
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Oxygen
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samples were performed by using a JASCO 6300 FTIR instrument. Dye absorption by ceramic 

samples was analyzed with a Leitz Optical Microscope (5x to 100x). Scanning Electron Microscope 

(SEM) Imaging analysis of the fabricated ceramic samples was performed by using a Hitachi S-

800 field emission scanning electron microscope (FE-SEM). 

3.3.2 Making of a Workable Ceramic Slurry 

Each ceramic component has a different solubility in water. Ball clay and kaolin have 

shown a higher degree of solubility, whereas feldspar and silica have shown lower solubility at 

room temperatures. A simple experiment was done to analyze the drying process of each 

component. This was done in an air-conditioned lab setup (Relative humidity of 65-70 % and 

temperature of 20 oC). Initial water amount needed for each material was different and was 

based on the mixing and workability of the slurry. Ball clay and kaolin showed good workability 

and needed a higher amount of water compared to feldspar and silica. As expected, evaporation 

rate (ER) reduced the time for all four cases. 

 
Figure 3.1   Water percentage of the material vs. time 

http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
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Figure 3.2   ERR percentage (%) vs. time 

 

When further analyzing the data, it was found that the evaporation rate (ER) to the 

present remaining water amount ratio (ERR) had slightly constant values for the initial exposure 

period (Figure 3.2). Feldspar and silica both showed segregation and material deposition at the 

bottom with time. After a couple of hours, two layers were formed with the top being more of a 

liquid compared to the bottom high dense layer. This was visibly prominent in feldspar than silica. 

The ERR percentage of feldspar increased after a while, and that can be explained by the layer 

segregation. Once the layers were formed, the evaporation rate increased as the top layer 

became more of a liquid with high water content than the original feldspar-water mixture. Ball 

clay and kaolin did not show any segregation and remained homogeneous throughout the time. 

Initial water to the ceramic ratio for feldspar and silica was 25 % (weight of water to the weight 

of total water- ceramic mixture), and for ball clay and kaolin were close to 35% and 45% 

respectively. 
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After analyzing the individual drying curves, the right amount of water for the ceramic 

mixture, 50% of feldspar and 50% of rest of the materials contributing equally, was calculated to 

be close to 30%.  Making several ceramic-water slurries for the combined mixture, it was 

experimentally found that the correct amount of water was the earlier predicted 30%.  This was 

crucial as higher than the right amount of water content in the mixture increases the drying time 

and affects the stability of the green ceramic body. A lesser amount of water in the ceramic paste 

increases inhomogeneity and the rejection rate at the green stage due to cracking and chipping 

of fabricated parts.  

3.3.3  Fabrication Procedure for the Flat Circular Ceramic Discs 

A circular metal of one inch diameter mold was used (Figure 3.3 a) to optimize the capsule 

fabrication procedure, using a wet pressing technique.  A ceramic slurry in water was poured 

onto a thin wooden board for drying purposes. After drying it for 2 hours, a workable ceramic 

dough was obtained. The workable ceramic dough was shaped into ceramic balls weighing 

approximately 9 g each. These clay balls were then shaped in a metallic mold by pressing with a 

5 lb metal block. After 2 hours (hrs), the metal block was taken off and the molded flat circular 

green ceramic discs were dried in air for 24 hrs. A total of 24 samples were made, and eight 

samples were sintered at 800oC (sample set-1). Another eight samples were sintered at 1000oC 

(sample set-2), and the rest were sintered at 1190oC (sample set-3). 12000C was the maximum 

limit of the furnace (Figure 3.3 c) and was not recommended to use it at 12000C for a length of 

time. The dwell time used on all three occasions was 6 hours. 

Separate samples were sintered for different durations of 4 hrs, 6 hrs, and 8 hrs, to 

identify the right sintering duration. The best results were obtained with samples sintered for 6 
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hrs and 8 hrs.  In the preliminary stage of development, we selected 6 hrs of sintering for the 

porosity and compatibility studies of the fabricated flat disk-shaped ceramic samples. For 

spherical bodies, due to their more complicated shape compared to a flat disc, the sintering 

duration was increased to 8 hrs.  

 
 

Figure 3.3   a) Ceramic mold & press weight  b) FlackTek speed mixer c) Thermo scientific 
furnace (model: 2416) 

 

 
Figure 3.4   Sintered ceramic disk 

 

a b c 
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3.3.4 Water Absorption Test 

Samples from all three different sintering temperatures were kept submerged in water 

for 24 hrs. After 24 hrs, the samples were taken out, and the surface water was removed using a 

water absorbing linen. As evident from Table 3.3, samples 1(sintered at 800oC) and 2(sintered at 

100oC) absorbed a substantial amount of water, whereas sample 3(sintered at 1190oC) was found 

to be completely non-porous to water. 

Table 3.3  Water absorption by ceramic samples 
 

Sample No 
 

Dry Weight 
(g) 

 
Weight of the sample after 

water absorption (g) 

 
% of water 
absorption 

Sample 1 
(Sintered at 800oC) 

7.043 8.199 16.41% 

Sample 2 
(Sintered at 1000oC) 

6.932 7.915 14.18% 

Sample 3 
(Sintered at 1190oC) 

6.957 6.958 0.01% 

 

3.3.5 Dye Absorption Test 

Another set of ceramic samples was then subjected to a dye penetration test for the 

qualitative estimation of the extent of porosity and sintering in these samples. The samples were 

dipped into a 10% vol/vol solution of patent blue VF dye in water for 20 min and then kept in a 

vacuumed chamber (Figure 3.5) for an additional 1 hr to allow deep penetration of the dye into 

the sample matrix. The samples were removed from the solution, and their surfaces were cleaned 

with linen. 
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Figure 3.5  Vacuum furnace (Isotemp 280A) 

 
The samples were analyzed, and it was found that the dye diffused deep into the matrix 

of samples 1 and 2 with no trace of the dye in the matrix of sample 3 (Figure 3.6). This illustrates 

that sample 3 is fully sintered and non-porous to the dye, whereas samples 1 and 2 are very 

porous. Sample 1 color intensity was high compared to the sample 2, which tells us that sample 

1 has the highest porosity out of all three samples. 

 
 

Figure 3.6   Dye absorption by ceramic samples, surface view (top) and cross-section view 
(below) 

 

Sample 2 Sample 1 Sample 3 
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3.3.6 Scanning Electron Microscope (SEM) Imaging  

Surface and cross sections of the samples were analyzed with a SEM for measuring pore 

size and microstructural details of the sintered ceramics. In the low-temperature sintered 

ceramic sample, large interconnected open pores are clearly visible, which may serve as channels 

for the seepage of molten salts in the fabricated capsules. Figure 3.7 shows the early intermediate 

stage of sintering (sample sintered at 800oC), as some sintering necks formed with neighboring 

particles are visible in the matrix (red circles).  

 
Figure 3.7   SEM of the ceramic samples sintered at 800oC a) surface and b)cross section 

 
The pores were in the micrometer scale range, and the cross-sectional pores were as high 

as over 2 μm.  Surface pores were slightly smaller and in the range of 0.3 – 0.9 μm. 

 
Figure 3.8   SEM of the ceramic sample sintered at 1000oC, a) surface and b) sample cross section 

a b 

a b 

http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
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At 1000 oC, there is a significant decrease in the porosity, but still a few interconnected 

pores are visible which indicate an advanced intermediate stage of sintering (Figure 3.8). When 

the ceramic specimens were sintered at 1190oC, the pores completely vanished from the surface 

(Figure 3.9), and only a few small isolated pores were visible in the cross-section of the sample. 

It appears that at this temperature a molten phase of the ceramic mixture has penetrated into 

the porous matrix, plugging interconnected pores completely. All this is indicative of a final stage 

of sintering of this ceramic composition.  

 
Figure 3.9   SEM of ceramic sample sintered at 1190oC, a) surface and b) sample cross section 

 
3.3.7 Material Compatibility (Hot Corrosion) Study 

The compatibility of the encapsulating materials with molten chloride based inorganic 

PCMs is crucial for the present application. To the best of our knowledge, no such study has been 

reported in the literature. Ceramic samples of the aforementioned composition sintered at 800oC 

and 1190oC were tested for reactivity with molten NaCl. 

The samples were cut into a small cylindrical shape to fit into the FTIR (JASCO 6300) 

sample chamber to collect reflectivity data. These samples were kept in separate crucibles and 

were exposed to the same amount of solid NaCl. As a control reference, two sets of samples 

a b 
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(sintered at 800oC and 1190oC) were placed in crucibles without any NaCl. These samples were 

then placed in a box furnace maintained at 850 oC for 24 hrs. After 24 hrs, the samples were 

removed from the furnace and subjected to visual and IR analysis.  

The IR spectra of the ceramic samples sintered at 800°C; a) untreated, b) treated with 

molten NaCl, and c) heated at 850°C for 24 hrs are shown in Figure 3.10. The IR spectra of the 

untreated sample and the sample heated at 850°C for 24 hrs are nearly identical with respect to 

their band shapes, intensity, and positions indicating no significant change in the microstructure 

of the ceramic sample on heating. Interestingly, the IR spectrum of the ceramic sample subjected 

to a molten NaCl treatment displays significant variations in the intensity, bandwidth, and 

position of the bands. A comparatively narrower, symmetrical and high intensity band is 

observed at 3600-3350 cm-1. The band in the untreated sample is much broader and centered at 

3650-3270 cm-1. This band is attributable to the surface and internal –SiOH and -AlOH groups. 

The broadening of the band is due to hydrogen bonding between the surface O-H group and the 

physisorbed H2O which bonds to surface O-H groups via hydrogen bonds. Physisorption of water 

is a reversible process; desorption during heating and resorption on cooling in air. Therefore, we 

did not notice any change in the spectra of untreated and heated ceramic samples. However, in 

the presence of molten NaCl, there is a substantial decrease in the number of surface -OH groups 

due to the reaction shown below.  

SiOH + Na+            SiONa   + H+ 

AlOH + Na+           AlONa   + H+ 

The decrease in the surface –OH group density is reflected in the decrease in the 

bandwidth and increase in the intensity of the band in the range 3600-3350 cm-1. Further 
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evidence of ceramic-molten NaCl reactivity is reflected in the change in the position and 

appearance of new bands in the IR spectra (Figure 3.10). 

 

 

Figure 3.10 IR spectra of ceramic samples sintered at a) 800oC , and b)1190oC; before and after 
molten NaCl and heat treatment at 850oC for 24 hrs 

 

The IR spectra of the ceramic sample sintered at 1190oC is significantly different from that 

sintered at 800oC. A very sharp, symmetrical and high intensity band centered at 3616 cm-1 is 

observed which suggest a high degree of dihydroxylation of the surface –SiOH and -AlOH groups. 

This is evident from the hydrophobic surface of the ceramic sample sintered at 1190 oC (Figure 

3.11). The reaction of this sample with molten NaCl did not show any significant change in the IR 

spectrum (Figure 3.10). Therefore, it can be inferred that molten NaCl reacts with ceramic 

samples sintered at 800oC, but has no impact on ceramic samples sintered at 1190oC. This was 

also confirmed from the color change observation after treatment with molten sodium chloride 

(Figure 3.12). The ceramic samples sintered at 800oC changed color on reaction with molten NaCl, 

whereas the ceramic samples sintered at 1190oC did not show any change in color after 24 hrs of 
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treatment with molten NaCl (Figure 3.13). An Energy Dispersive X-ray Spectroscopy (EDS) analysis 

of these samples displayed an increase in chloride content from 0 to 31% in the 800oC sample 

and only 2.6% increase in the 1190oC sintered ceramic sample (Figure 3.14). 

 
Figure 3.11 a) Hydrophilic, sintered at 800oC  b) hydrophobic, sintered at 1190oC 

 

 
Figure 3.12 Ceramic disc sintered at 800oC; a) before testing, b) and c) after treatment with 

molten sodium chloride at 850oC for 24 hrs 
 

 
Figure 3.13 Ceramic disc sintered at 1190oC; a) before testing, b) and c) after treatment with 

molten sodium chloride at 850oC for 24 hrs 
 

a b 

a b c 

b a c 
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Figure 3.14  EDS of molten NaCl treated ceramic samples sintered at a) 800oC and b) 1190oC 

 

We also subjected individual components of the ceramic mixture, sintered at 800oC and 

1190oC, to molten NaCl treatment in order to identify the reactive component in the mixture. 

The individual components included ball clay, feldspar, kaolin, and silica. Figure 11 displays 

sintered samples (at 800 oC) before and after treatment with molten NaCl for 24 h at 850 oC. As 

evident from the color intensity (Figure 3.15), ball clay and kaolin showed the strongest reactivity 

with molten NaCl. This was confirmed by the reflectance IR spectroscopy of kaolin and feldspar. 

The spectra of kaolin in Figure 3.16 displayed significant shifting of peaks in the region 370-1034 

cm-1 and also showed two additional peaks at 637 and 581 cm-1, which suggested significant 

changes in the internal structure of kaolin after treatment with molten NaCl.  

b a 
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Figure 3.15 Components of ceramic mixture sintered at 800oC (top) and subsequent treatment 

of the sintered components with molten sodium chloride at 850oC for 24 hrs (bottom) 
 
 

Figure 3.16  IR spectra of kaolin(a) and feldspar(b) before and after treatment with molten NaCl 
 

Interestingly, the samples sintered at 1190 oC showed little or no reactivity with NaCl 

(Figure 3.17). Only a small variation in the color of the ball clay and kaolin was noticed after 

treatment with molten NaCl. Clearly, even highly reactive ceramic components, kaolin, and ball 

clay, become unreactive when sintered at 1190 oC. All this indicate that sintering at 1190 oC is 

essential to prevent reaction of ceramics with molten salts. It appears that high-temperature 

Ball Clay Feldspar Kaolin Silica 
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sintering causes dehydroxylation and ceramic densification leading to a reduction in free energy 

which may be responsible for the decline in material reactivity. 

 
Figure 3.17  Sintered (1190 oC) ceramics after treatment with molten NaCl at 850 oC for 24 hrs 

 

3.4 Fabrication of Ceramic Capsules 

Once we identified the ceramic composition (50% feldspar, 16.67% kaolin, 16.67 ball clay, 

and 16.67% silica), sintering temperature and duration, we focused our attention on optimizing 

the fabrication procedure of the ceramic capsules. We found clear evidence that any partially 

sintered part of the ceramic capsule could cause sample failure during thermal cycling. We 

observed that a partially sintered porous ceramic parts react together with molten alkali metal 

chlorides. This can cause critical structural changes at the grain boundary of the incompletely 

sintered ceramic body resulting in the development of micro-cracks that subsequently grow in 

size during thermal cycling, thus leading to leakage of the molten PCM. To ensure complete 

sintering of the ceramic capsule, the sintering time was increased from 6 to 8 hrs.  

Apart from heat transfer benefits of the spherical shape, the stress calculation based on 

the thin wall equations indicated that the hoop stress generated in a spherical body is half of that 

of generated in a cylindrical body with the same radius. Therefore, attention was focused on the 

fabrication of spherical capsules for this application with ceramic.  

Ball Clay Feldspar Kaolin Silica 
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A mixture of 50% feldspar, 16.67% kaolin, 16.67 ball clay, and 16.67% silica was taken in 

a container and mixed thoroughly by using a speed mixture machine (FlackTek). Water (30% w/w) 

was added to the ceramic mixture and mixed to form a ceramic dough or paste. The paste was 

molded into hemispherical cups by pressing the paste into a hemispherical dye. Two 

hemispherical cups were then joined by using water and applying some pressure with hands, and 

a hole was created at the top of the capsules. The green ceramic capsule with a hole at the top 

was air dried for 24 hrs. After air drying, the capsules were sintered in a controlled temperature 

environment. The green ceramic capsules were heated to a temperature of 100oC (2oC/min) and 

dwelled for one hour at this temperature. After this step, the ceramic capsules were heated to a 

temperature of 1190oC (at 3 oC/min) and dwelled for approximately 8 hrs. The Figure 3.18 shows 

the fabrication process flow chart.  

 

 
 

Figure 3.18 Flow chart of the fabrication procedure of the spherical capsule 
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3.5 Sealing the Capsule 

Sealing is one of the major challenges in the encapsulation process. The sealing 

temperature is restricted because of the phase change temperature and the molten PCM vapor 

pressure. The contamination happening with PCM vapor can cause damage to the seal making 

the whole capsule vulnerable to the outside conditions. The post-formed and pre-formed 

approaches were initially adopted to tackle this problem. 

3.5.1 Post-formed Approach  

In the post-formed approach, a slurry of ceramic materials was directly applied over 

spherical salt pellets. Ceramic materials are not flexible and have a low coefficient of thermal 

expansion compared to inorganic salts. The expansion of salt at elevated temperatures can cause 

cracks in the ceramic coating. Therefore, provisions were made to allow expansion of the salt in 

its solid state without cracking the overlying ceramic coating. A temporary intermediate layer 

was used, which melts on heating and flows out of the porous ceramic layer leaving a space in-

between the salt pellet and the ceramic layer. Palmitic acid was used as this intermediate layer. 

Even after fixing the issue with thermal expansion mismatch, finding a reliable nonporous 

encapsulation was not easy with the temperature restriction. Combination of Tetraethyl ortho-

silicate (TEOS), Carbon fiber and several other chemicals were used with the ceramic mixture 

(50% feldspar, 50% - Ball clay, Kaolin, Silica) without much success. 
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Figure 3.19 Ceramic coated sodium chloride salt pellets 

 

Figure 3.20 shows a capsule that was subjected to thermal testing and then cut open to 

check for reactivity and leakage of salt into the pores of the ceramic layer. The maximum number 

of thermal cycles that survived post-formed capsule approach did not exceed ten.  Therefore, we 

shifted our attention towards the pre-formed approach. 

 

   
Figure 3.20 Salt pellet after thermal testing (left)- cut portion of pellet(right) 
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3.5.2 Pre-formed Approach 

The procedure involved the use of a workable slurry of ceramic materials obtained by 

mixing of ceramic materials which we already discussed in section 3.3.2 & 3.3.3. Two types of 

dies, spherical and rectangular dies, were used initially to test the sample compatibility. 

 
Figure 3.21 Pre-formed capsules 

 
Sealing materials were chosen considering the PCM melting temperature. Commercially 

available alumina adhesive (Alumina and latex material) was used initially as the sealing material. 

This alumina adhesive was for high-temperature applications and had a lower curing 

temperature than PCM melting temperature. Even with this technique, highest number of cycles 

achieved from EPCM was around 20 thermal cycles. Again the main issues lied with the sealing. 

First, the sealing area was not enough, and then the sealing material was porous.  

Certain strategies were developed to encounter the issue of the sealing area.  Capsules 

such as Figure 3.22 were able to hold a high amount of sealing materials, but material porosity 

was still an issue that needed more attention.  
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Figure 3.22 Techniques of increasing the sealing area 

  

3.5.3 Making Nonporous Seals 

Porosity was addressed in two different approaches for two different PCMs because of its 

melting temperature. For NaCl, which melts at 801oC, a combination of sodium silicate (Na2SiO3) 

and alumina adhesive was used. A small amount of alumina adhesive was initially used, and it 

was cured at 200oC. On top of the alumina, Na2SiO3 powder was added.  The softening point of 

Na2SiO3 is around 1000 oC. The localized heating method was adopted to prolong the melting and 

avoid NaCl vapor as much as possible. Figure 3.23 shows the localized heating block that was 

used. The sealing area was the only exposed area while the rest were well insulated. The capsules 

were successful for over 100 cycles but showed small weight reduction after some thermal cycles.  

For the PCM of NaCl-KCl eutectic, a different approach was used.  
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Figure 3.23 Ceramic block for localized heating 

 

3.5.3.1 Novel Concept for Sealing Eutectic Mixtures 

This is an innovative novel approach and can be adopted for any eutectic mixture. 

However, it is more effective if the individual melting points of the pure components are 

considerably higher than the combined eutectic melting temperature. This was experimentally 

investigated for the PCM of NaCl-KCl, which was one of our selected PCMs. 

Fifty grams of NaCl-KCl eutectic with a melting point of 657oC was used for the 

experiment. The initial furnace temperature was varied and the time of melting was recorded. 

This experiment relied on visual inspection, so the status was checked every 15 minutes by 

opening the furnace (Figure 3.24).  
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Table 3.4  Melting time comparison of layered and mixed eutectic 

Furnace 
temperature 

Time of melting for layered 
arrangement of eutectic 

(minutes) 

Time of melting for mixed 
eutectic (minutes) 

760 oC 30-45 15-30 

750 oC 30-45 15-30 

740 oC 30-45 15-30 

730 oC 30-45 30-45 

720 oC 30-45 30-45 

710 oC 45-60 30-45 

700 oC 45-60 30-45 

690 oC 180 (3hrs) 45-60 

680 oC No melting even after 16 hrs 45-60 

 
 
 

 
Figure 3.24 Molten eutectic of NaCl-KCl 

 

A more accurate quantitative experiment was planned with several thermocouples inside 

the NaCl-KCl eutectic mixture. Unfortunately, the results were inconclusive. Thermocouples 

failed due to the corrosion of thermocouple body in the presence of molten salt (Figure 3.25).    
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Figure 3.25 Corrosion of thermocouples (investigation of melting for an enclosed spherical 

capsule) 
 

Since we already established some proof with the earlier visual inspection of NaCl-KCl 

eutectic, we tested the concept with a low-temperature eutectic salt. Melting points of the pure 

materials and the eutectic used here are as follows; 

• NaNO3 – melts at 308oC 

• KNO3 – melts at 334 oC  

• NaNO3/KNO3  eutectic - melts at 221 oC 

45.7 % wt (50% mol) of NaNO3 and 54.3 %  (50% mol) of KNO3 were used for the eutectic 

mixture[155].  Three separate samples were made. 

• Sample 1 - Mixed the whole eutectic with a speed mixture machine  

• Sample 2 - First NaNO3 layer was melted and solidified, and then KNO3 was added 

• Sample 3 - Separate NaNO3 and KNO3 powder layers 
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Same size alumina crucibles were used for the experiment. The first sample was made by 

adding 45.7g of NaNO3 and 54.3g of KNO3. This sample was mixed thoroughly using a speed 

mixture machine (Figure 3.3 b). The second sample was made by adding 45.7g of NaNO3 and 

melting and solidifying it while in contact with a thermocouple (Figure 3.26). The rest of the KNO3 

of 54.3g were added later on to complete the eutectic composition. The third sample was made 

by carefully adding first, a layer of NaNO3, and then a layer of KNO3. The particle size of these 

layers was fairly large, close to 1000μm (1mm).  

 

  
Figure 3.26 Solidified bottom layer with the attached thermocouple 

 

 
 

Figure 3.27 a) Three thermocouples with different heights, b) All 3 samples with 
thermocouples, c) Data gathering 

a b c 
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The temperature profile of each sample was recorded using three thermocouples at three 

different heights (Figure 3.27 (a)). The thermocouple distance was calculated based on the layer 

heights and intersection plane. The bottom thermocouple was placed close to the middle of the 

bottom layer, and the middle thermocouple was in the range of the intersection plane. A third 

thermocouple was positioned close to the middle of the top layer (Figure 3.27). 

After analyzing the collected data, it was evident that the sample one with the mixed 

eutectic showed a melting phase during the first run. The mixture started melting after 30 minute 

mark (Figure 3.28). Melting was evident from 30 to 60 minute period. In the second run, 

thermocouple relevant to the inside furnace temperature, placed right above the crucible, 

increased to a slightly higher temperature even though the furnace set temperature of 280 oC 

was kept intact for both the experiments. These small variations are common with furnaces when 

there is more than one sample of phase change happening (with different temperatures). Most 

of the furnaces take the feedback from one inbuilt thermocouple and thus, small variation inside 

the furnace is normally common. To address this, reference thermocouples were placed (labeled 

as furnace inside) above each of the crucibles, therefore not relying completely on furnace 

temperature for the analysis. Figure 3.29 shows that the solidification happened around 220oC, 

which is very close to the literature value of melting for this eutectic (221oC).  
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Figure 3.28 Heating comparison of 1st and 2nd run of the initially mixed eutectic 

 

 
Figure 3.29 Cooling comparison of 1st and 2nd run of the initially mixed eutectic 
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The mixture with the initial solidified layer (Sample 2) showed no melting in the first run 

for the set furnace temperature of 280oC (Figure 3.30). However, it clearly showed a solidification 

phase during the cooling (same run) and also during the second time of heating for the same 

furnace temperature. Clearly, it was melted during the middle period. This phenomenon is not a 

common occurrence in the phase transition.  The furnace was kept at 280oC for close to 6 hrs. 

According to the data, it was noticeable that some activity happened during the 3 - 6 hr period 

(Figure 3.31).  The temperature reduction in that period was only seen in the first run. It was 

evident that some sort of phase transition happened during this period and it happened way 

above its eutectic melting point of 221oC (Figure 3.31).  

 
Figure 3.30 Heating comparison of the 1st and 2nd run of the mixture with the initial solidified 

layer 
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 Figure 3.32 shows the cooling comparison of the first and second run. Solidification was 

much prominent in the second run indicating that the melting happened during the first run could 

be partial and needed more time (or higher temperature) for complete melting.    

 
Figure 3.31 Comparison in the middle period of the 1st and 2nd run of the mixture with the 

initial solidified layer 
 

 
Figure 3.32 Cooling comparison of 1st and 2nd run of the mixture with the initial solidified layer 
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The third sample of layered arrangement showed no sign of melting or solidification for 

the set furnace temperature of 280oC (Figure 3.33 & Figure 3.34). Several experiments were 

carried out with increasing furnace temperature to find the point of melting. The melting was 

finally visible for the set furnace temperature of 340oC (Figure 3.35).  The melting occurred way 

above 300oC temperature. To check the consistency of the eutectic mixture, second time melting 

was carried out and then compared with the initial run. Figure 3.36 & Figure 3.37 show the 

melting and solidification curves. It was noticeable that second time melting happened close to 

the 220oC temperature and therefore we can conclude the composition was same throughout 

the experiment.  

 

 
Figure 3.33 Heating comparison of 1st and 2nd run for separately layered mixture 
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Figure 3.34 Cooling comparison of 1st and 2nd run for separately layered mixture 

 
 
 

 
Figure 3.35 Heating of separately layered mixture with the furnace temperature of 340oC 
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Figure 3.36 Heating comparison of second time melting with the first run 

 
 
 

 
Figure 3.37 Cooling comparison of second time with the first run 
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These results clearly demonstrate that having layers (powder or solid), instead of a 

mixture can prolong the melting time and even go close to the individual melting temperatures 

without going through the phase transition. This technique was effectively adopted for the 

sealing process as most of the sealing materials get contaminated by the PCM vapor, if the sealing 

happens close to the melting or above the eutectic melting temperature.   

3.5.3.2 Sealing the Capsule of NaCl-KCl Eutectic Mixture  

For the case of NaCl-KCl eutectic preparation, the right amount of KCl is added to the 

sintered capsule which is first melted (at 770oC) and later solidified by cooling. This was followed 

by the addition of a requisite amount of NaCl powder to make a NaCl-KCl eutectic. A mixture of 

sintered ceramic powder and sodium tetraborate was used as a sealing agent to plug the hole as 

indicated in the Figure 3.38. The capsule was then heated up to 760oC and cooled quickly. Sodium 

tetraborate melted at this temperature and formed a non-porous plug at the hole and 

simultaneously, NaCl and KCl grains diffused into each other leading to the formation of eutectic 

with a melting point of 657oC.  

 
Figure 3.38 Cross-section view of the sealed alumina capsule containing NaCl-KCl eutectic 



www.manaraa.com

64 
 

Capsules made earlier, before introducing this sealing technique, survived only up to 65 

thermal cycles. Capsules made with this sealing technique survived many thermal cycles, and one 

capsule survived 510 (Figure 3.39) thermal cycles. This capsule also had a thin alumina paste layer 

for additional protection. The weight loss after 510 thermal cycles (over 1000 hrs) was in the 

range of 15-20 %.  

 
Figure 3.39 Capsule that survived 510 thermal cycles 

 
 

3.5.4 Alumina Capsules 

As a material, alumina (Al2O3) was found to be one of the most suitable candidates for 

encapsulation. It is fairly inexpensive and non-reactive with the molten chloride salts. The 

downside of alumina is with the encapsulation process, as Al2O3 has a high sintering temperature 

(1400 - 1600oC). A collaborative effort with Kyocera, USA, was initiated to fabricate alumina 

capsules as in-house furnaces had a limitation of 1200oC. Many different capsules were made 

with slip casting and dry pressing techniques using 99% pure Al2O3.   
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Figure 3.40 Different types of alumina capsules by Kyocera 

 
After carrying out several experiments, the best results were achieved for the PCM of 

NaCl-KCl. This is accomplished with a slight modification to the sealing materials. The new 

material was a mixture of Feldspar 50% and sodium tetraborate 50% composition. Sealing was 

again done at 760oC (Figure 3.41).   

 
Figure 3.41 Tested alumina capsule 

 

3.6 Testing and Thermal Cycling 

The durability of the fabricated capsules was evaluated by thermal cyclic tests performed 

by repeating melt and freeze cycles. The ceramic capsules containing NaCl-KCl eutectic were 

thermally cycled between 580oC to 680oC, dwelling for one hour at each temperature (Figure 

3.42). The capsules filled with NaCl were tested from 780oC and 850oC. Post-formed capsules and 
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initial pre-formed capsules showed cracks and sudden dramatic weight losses during the thermal 

cycling tests. In the latter part of the study, the tested ceramic capsules did not fail during thermal 

cycling due to cracks in the capsules. However, these capsules showed small continuous weight 

losses with time. The ceramic capsules sealed with 50-50 feldspar-sodium tetraborate mixture 

did not show any significant weight loss compared to all other sealant materials.  It appears that 

the 50-50 feldspar-sodium tetraborate is significantly non-porous to liquid PCM. Due to the 

innovative sealing technique used (section 3.5.3.1), the eutectic of NaCl-KCl capsule showed a lot 

of promise compared to the NaCl capsules.  

 

 
Figure 3.42 Temperature profile of the thermal cycling test for a) NaCl-KCl eutectic and b) NaCl 

containing capsules 
 
 
 

a b 
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Figure 3.43 DSC analysis of NaCl-KCl eutectic salt 

 
At different stages of thermal cycling process, capsules were dissected to analyze their 

thermophysical properties. DSC analysis of the thermally cycled capsules of NaCl and NaCl-KCl 

eutectic showed no significant change in their thermophysical properties (Figure 3.43).  

In a previous experiment, weight loss of 15% - 20 % was observed after 500 thermal 

cycles. A capsule made of Alumina, with NaCl/KCl eutectic as the PCM, had successfully 

undergone 1000 thermal cycles. This capsule was thermally cycled at 580oC and 680oC, with a 

dwelling time of one hour at each temperature.  

Table 3.5  Alumina capsule configuration 
Empty capsule weight 66.06 g 
PCM (NaCl/KCl eutect) weight 73.99 g 
Total Weight with Sealant mixture 140.63 g 
*After curing  140.44 g  

*Curing sequence- 760 oC at the rate of 3 oC/min &  dwell for 10 minutes. 
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Table 3.6  Weight loss of alumina capsule which completed 1000 thermal cycles 
No of thermal cycles 

(580 oC - 680 oC)  
Weight of the 

PCM 
PCM 

weight loss 
% PCM loss - new 

capsule(1000) 

0 140.44 0.00 0.00% 
20 140.44 0.00 0.00% 
50 140.42 0.02 0.03% 
80 140.37 0.07 0.10% 

110 140.25 0.19 0.26% 
150 140.09 0.35 0.47% 
200 139.78 0.66 0.89% 
300 139.10 1.34 1.81% 
400 138.86 1.58 2.14% 
500 138.55 1.89 2.55% 
600 138.34 2.10 2.84% 
800 137.33 3.11 4.21% 

1000 136.78 3.66 4.93% 
 
 
 

 
Figure 3.44 Comparison of PCM weight loss percentage 
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Table 3.6 and Figure 3.44 show the weight loss and weight loss percentage comparison 

with the previous sample which ran for 510 thermal cycles. Even though there is a small 

continuous weight loss, the rate of weight change has decreased in the latter stages of thermal 

cycling. These results are still a significant improvement compared to previous capsules tested. 

Due to fatigue induced by the thermal cyclic load, almost all prior capsules began to show some 

sort of surface cracks long before failing. The new capsule showed no sign of cracks even after 

enduring 1000 thermal cycles demonstrating high dimensional stability. 

3.6.1 Pressure Build-up 

In the initial stages of the study, we established that the pressure build-up inside the 

capsule due to the expansion of air during charging of the LHTES system is one of the major 

causes of failure. The sealing temperature of the capsule is crucial as it directly influences the 

final pressure inside the capsule. The sealing of a NaCl containing capsule at around room 

temperature causes the pressure to increase by 25 times the initial pressure when heated to 

830oC. We considered a 30% void fraction and 28% volume expansion of NaCl on melting for this 

calculation (Table 3.7). One would need a thick capsule wall to accommodate this pressure. 

However, this would decrease the fraction of PCM and in turn the total energy storage density 

of the system. On the other hand, sealing at elevated temperatures diminishes the pressure and 

the need to have a thick encapsulation wall. Therefore, to minimize the wall thickness, the 

capsule was sealed just above the melting point of the contained PCM. 

Sealing at high temperature is essential to reduce internal pressures and tensile stresses 

on the body of the capsule. Ceramic is not a good material to handle tensile loads and therefore, 

it is essential to minimize the pressure build-up. 
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Table 3.7  Pressure calculations based on sealing temperature 

 
 

A ceramic cap, made from a 50-50 feldspar-sodium tetraborate mixture or even pure 

sodium tetraborate was used for sealing as explained earlier. At the initial stage of heating before 

760 oC , the sealing cap is porous, allowing the diffusion of air out of the capsule that could 

otherwise expand during phase change and cause the capsule to rupture. In the final stage, the 

materials in the sealing cap melt and turn into a very viscous liquid, which when cooled turn into 

a non-porous plug. With the layered eutectic arrangement, pressure build-up was further 

reduced as the initial sealing temperature exceeds the maximum limit of the operating range. 

3.7 Encapsulation Using Metals 

Finding cost-effective yet reliable encapsulation techniques becomes difficult with the 

increase of operating temperature. Ceramics provide high corrosive resistance but are not as 

economical in comparison to metallic encapsulation [37–40]. For a temperature range of 500-

600˚C, if certain preventive measures were taken to control the surface oxidation, metallic 

encapsulation was found to be reliable and cost-effective [40,41]. For metallic encapsulation, 

cylindrical type encapsulation was the cost-effective and more practical technique at the 

moment, considering the availability of steel tubes in the market [40]. 

25 12.97 25.6

400 12.97 10.04

790 12.97 5.37

25 11.12 8.22

400 11.12 3.37

790 11.12 1.93
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There has been some research on thermal storage with cylindrical capsules 

[24,27,66,69,156–170]. Regin et al. [160] used paraffin wax as the PCM and analyzed the melting 

behavior experimentally. Wang et al. [158] examined the enhancement of charging rate by the 

use of multiple phase change materials in a cylindrical capsule. Heat transfer characteristics of 

the liquid region in a horizontal cylindrical capsule were studied experimentally by Saitoh et al. 

[157]. Shmueli et al. [165] numerically investigated the PCM melting procedure in a vertical 

cylindrical tube. Farid et al. [170] discussed the role of natural convection during melting and 

solidification. Bhardwaj [40]  tested the compatibility of Metal and metal coating with chloride 

salts under temperatures above 600 oC. PCM of NaCl-KCl eutectic was contained in a Ni coated 

(200 μm) carbon steel cylindrical capsule. It survived for 1700 thermal cycles with no weight loss. 

The objective of selecting a PCM in the range of 500oC -550oC was aligned with the 

operating temperature range of high-pressure steam power plants.  A eutectic mixture of sodium 

sulfate (Na2SO4) and potassium chloride (KCl), relatively cheap salts, was selected for its melting 

temperature of 515˚C and low reactivity. The eutectic mixture was tested for several thermal 

cycles continuously and with differential scanning calorimetry (DSC) & thermogravimetric 

analysis (TGA). Figure 3.45 shows the repeatable results achieved for five continuous cycles.  
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Figure 3.45 DSC & TGA results for Na2SO4-KCl mixture 
 
 

3.7.1 Encapsulation Criteria 

Carbon steel, though inexpensive, does not fare well in aerobic conditions at high 

temperatures. On the other hand, high corrosion resistant metals are expensive. For example, Ni 

shows excellent corrosion resistance but is very expensive to use as a base material. An effective 

solution to tackle both the corrosion and cost issue was to have a thin coating of Ni on Carbon 

steel. 

The outside surface of the encapsulation would be exposed to the heat transfer fluid, 

therefore requires a corrosion resistant exterior surface. The inside surface of the encapsulation 
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would be in contact with PCM at high temperatures. This would be an extremely corrosive 

environment under aerobic conditions. However, in anaerobic conditions, the interior of the 

encapsulation would not require corrosive resistant surface. A successful approach was proposed 

for sealing under inert conditions by Bhardwaj [40]. The same method was adopted for this 

application as well, and as a result, Ni coating was done only on the exterior surface.  

 
Figure 3.46 Ni coated carbon steel capsule 

 

3.7.2 Fabrication Procedure 

Different sized capsules were made and tested, but the capsule with 10” in height and 2” 

in diameter was the one used for the lab-scale LHTES setup, which will be discussed further in 

the next chapter. This capsule was filled with 0.95 kg of powdered PCM through a narrow 

opening. Before sealing, inert conditions were maintained while the PCM was melted to reduce 

the amount of air present inside the capsules. This is to prevent the carbon steel from corrosion. 

While the PCM was molten, a cap was welded to the narrow opening. TIG welding provided a 

smooth joint appropriate for a uniform nickel coating. The sealed capsules were electroplated 

with 200 µm of nickel and coated with Rust-oleum® corrosion paint for added protection. A 
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similar capsule was tested with NaCl-KCl eutectic and tested for more than 1000 thermal cycles 

(580-680C) [40]. The recorded weight loss was insignificant, and the thermochemical properties 

were consistent throughout testing. Thus, refilling or changing PCM is not required and should 

also be avoided considering the economic feasibility of fabricating these capsules. The final 

capsule is shown in Figure 3.47.  

 
Figure 3.47 Metalic capsule of 2" diameter  and 10" height (with Rust-Oleum coating) 

 

3.7.3 Improvement of Heat Transfer Rate by Radiation Absorbing Particles 

As a step to further improve the heat transfer between the PCM and capsule boundary, 

radiation absorbing particles were added to the eutectic mixture. The presence of transition 

metal chloride additives shows a distinct increase in absorption in the infrared radiation(IR) 

spectrum, with very minimal impacts on melting temperature and latent heat of fusion [171]. 

Myers et al. [171,172] experimentally analyzed the effect of additives on radiation heat transfer 

in high-temperature applications. This approach is an effective enhancement for temperatures 

above 500oC. This technique of enhancement can be categorized as combined heat transfer 

enhancement due to the encapsulation as well as radiation absorbing particles. The additives 

selected for this case are cuprous chloride (0.2% wt.) and ferrous chloride (0.1% wt.) [172].  

Use of metal capsules is further discussed in the next chapter, in the design of a lab-scale 

LHTES system.  
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CHAPTER 4: TESTING OF A LAB-SCALE THERMAL ENERGY STORAGE WITH PCM CAPSULES1 
 

As mentioned earlier, most of the experimental research on thermal energy storage has 

been done at low temperatures, even though there is considerable focus on high-temperature 

range applications. There is a lack of experimental data for performance analysis of high-

temperature LHTES systems in the literature. This study focused on the design and performance 

analysis of a lab-scale high-temperature LHTES unit [60]. 

A temperature range of 500oC-600oC was selected because it represents the operating 

temperature range of high-pressure steam power plants. The experiment could be used for 

temperatures below 650oC, and in fact the system was also used earlier for a temperature range 

of 280-350oC [173].  

4.1 PCM Selection and Capsule Fabrication for the Lab-scale LHTES System  

A eutectic mixture of sodium sulfate (Na2SO4) and potassium chloride (KCl) was selected 

as the PCM. The fabrication of the metal capsules is explained in the section 3.7.2.  Radiation 

absorbing particles were also added to further enhance the heat transfer (section 3.7.3).  To 

measure the temperature inside the capsules, thermocouples were placed in direct contact with 

the PCM. However, these thermocouples degraded and corroded after multiple runs, which 

affected the accuracy of the temperature measurements.  

 
1 The content of 4.1 to 4.6 was published in Wickramaratne C, Moloney F, Pirasaci T, Kamal R, Goswami DY, et al. “Experimental 
Study on Thermal Storage Performance of Cylindrically Encapsulated PCM in a Cylindrical Storage Tank With Axial Flow”, ASME 
2016 Power Conf., ASME; 2016, p. V001T08A014. doi:10.1115/POWER2016-59427. Permission is included in Appendix C.  
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To allow temperature measurement inside the capsules and to protect the 

thermocouples, an inner tube composed of carbon steel was welded inside the cylindrical 

capsule, as shown in Figure 4.1. 

 

 
Figure 4.1   Capsule schematic with the inner tube and the actual photograph 

 

4.2 System Components 

System components were selected considering the operating conditions of temperature, 

flow rate and pressure, compatibility with each other, reliability and cost. 

4.2.1 Storage Tank 

A preexisting lab-scale packed bed system was retrofitted and used as a thermal storage 

tank. The cylindrical carbon steel tank had both a diameter and height measuring 0.254 m. The 

storage tank housed 14 cylindrical capsules (Figure 4.2), which gave the porosity of the tank to 

be around 0.37. A perforated plate was used to support the cylinders in an upright position while 
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still allowing for the HTF to flow through the tank. Only four capsules, A through D (Figure 4.2), 

were prepared to have internal temperature measurement recordings, as shown in Figure 4.3. 

 
Figure 4.2   Storage tank schematic 

 
 
 

 
Figure 4.3   Inside thermocouple arrangement for capsule A, B, C, and D 
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Figure 4.4   Capsule arrangement inside the storage tank 

 

 
Figure 4.5   Storage tank with the thermocouples(without the insulation) 

 
 

4.2.2 Heater 

Air was used as the heat transfer fluid in this experiment, and 6kW Sylvania air heaters 

were used to heat the air to maintain required temperatures. Two separate heater systems were 

used for charging and discharging processes. The charging and discharging heater units consisted 

of six and four air heaters respectively. The target operating temperatures were 20˚C above and 

below the melting temperature of PCM of 515˚C. However, at first, the discharge heaters could 

not support a temperature greater than 380˚C, limiting the operating range between 380˚C and 

535˚C. But later on, with the addition of new heat to the discharge side, the expected 495oC was 

achieved.    
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4.2.3 Blower 

A square Dayton 115V, 2860 RPM capacity blower was selected to pass air through the 

system. It was adapted to have a 4” diameter round outlet to match the pipe entering the 

heaters. A variable switch allowed for the flow rate to be adjusted. Flow rates between 120 and 

140 m3/h were chosen considering the heater capacity and its limitations. The flow direction was 

reversed for charging and discharging. During charging, the flow entered through the top set of 

heaters and down through the tank; while for discharging, the flow direction was reversed, 

allowing the cooler air to flow up through the tank. The setup of the system was symmetrical 

through the middle of the storage tank (Figure 4.7). 

4.2.4 Data Acquisition System 

K-type thermocouples were employed for temperature measurement at various axial and 

radial positions. Four capsules with thermocouples inserted inside for PCM temperature 

measurements were installed across the diameter of the bed. Inside capsule temperatures were 

measured 1” from the top, 1” from the bottom, and at the center of the capsule. To measure the 

amount of energy absorbed by the storage tank, thermocouples were installed above and below 

the tank. Additionally, four rows of thermocouples spaced 2” apart, were installed across the 

tank diameter to measure the axial temperature profile. Five probes per row were placed to 

analyze the radial temperature variation of the HTF as shown in Figure 4.6.  
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Figure 4.6  Thermocouple placement inside the tank & tubes 

 

4.2.5  Connecting Components  

The air enters the system through the blower to a pipe of 4 inch diameter and 5 feet 

length. The horizontal pipes between the heaters and the tank were 6 inch in diameter. Carbon 

steel diffuser cones, 19 inch in length, were installed to increase the diameter to 10 inch in the 

storage tank. To reduce heat losses, fiberglass insulation was installed around the whole system. 

The insulation placed around the storage tank was 6 inch thick. Figure 4.7  shows the final 

arrangement of the LHTES lab-scale setup.  
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Figure 4.7   Schematic (top) and the actual (bottom) lab-scale setup 

 
4.3 Experimental Procedure 

Before each run, the system was first stabilized at 380oC (later on 495oC). To begin the 

cycle, the inlet flow was set to 535oC, which was 20oC above the melting temperature of the PCM, 

and the system was allowed to stabilize. The system was considered stable when there was no 

significant change in the outlet temperature. To start the discharge cycle, the flow was then 

reversed and the discharge inlet air was heated to 380oC. One cycle is defined as one charging 
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cycle followed by a discharging cycle. Seven cycles were tested at two flow rates each: 122 m3/h 

and 138 m3/h. 

4.4 Uncertainty Analysis 

To check the repeatability of the whole setup, several trials were carried out with the 

same operating conditions. Observed data showed minimal deviation. The uncertainty of a 

measurement is defined as the root sum square of the instrumental error, and the random error 

observed in repeated measurements [174]. Temperature uncertainty was found to be ±4.0oC for 

an operating temperature of 535oC. According to the manufacturer, the digital anemometer had 

an uncertainty of 0.14 ms-1 for 4.8 ms-1.  

4.5 Results and Discussion 

The temperature readings of the tank were mainly used to calculate the energy and 

exergy efficiencies of the lab-scale LHTES system. The HTF temperatures for one run at the higher 

flow rate tested are shown in Figure 4.8 and Figure 4.9. Figure 4.8 shows the axial temperature 

profile of the system. During charging, the capsules absorb the heat from the HTF, thereby 

cooling the HTF as it passes through the tank. While during discharging, the heat transfer happens 

in the reverse direction. Figure 4.9 shows the average radial temperature profile, indicating a 

decrease in temperature from the outer bend to the inner bend side. The reason for this 

difference in temperature was that the diffuser cone before the storage tank was not long 

enough to provide a developed flow after the bend in the system (Figure 4.7). Due to this setup, 

the air velocity was uneven in the system; the air was faster on the outside, near capsule A, and 

slower on the inside of the system, near capsule D (Figure 4.10). Subsequently, the heat transfer 

was faster where the velocity was faster, causing capsule A to melt before capsule D (Figure 4.11). 
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Figure 4.8   Average axial air temperatures for one run at 138m3/h 

 

 
Figure 4.9   Average radial air temperatures for one run at 138m3/h 
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Figure 4.10 Tank velocity from outer bend to inner bend 

 

 
Figure 4.11 Capsule center temperatures for one run at 138m3/h 
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Figure 4.11 illustrates the temperature measurements at the center of four measured 

capsules for one cycle at 138 m3/h. The temperature distribution in capsule A for the same cycle 

is shown in Figure 4.12. Capsule A took a total of 120 minutes to melt and 30 minutes to solidify. 

The melting time was much longer than the solidification time due to the operating 

temperatures. If the operating temperatures were centered on the melting point, the 

solidification time would be longer than the melting time for the same HTF flowrates. This is 

because solidification is a conduction dominant process while melting is a convection dominant 

process. However, due to the setup limitations, the charging HTF temperature was supplied 20oC 

above the melting point while the discharging HTF was supplied 135oC below the melting point, 

resulting in higher heat transfer rate during the discharge process. This caused the solidification 

process in the discharge cycle to occur significantly faster than the melting process in the charging 

cycle. Analysis with the modified discharge heater is discussed later in this chapter.  

 
Figure 4.12 Capsule 'A' temperatures for one run at 138m3/h 
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The temperature profile at the top of the capsule did not represent the melting or 

solidification due to the void space around the top thermocouple. The bottom of the capsule A 

took longer to melt than the center since it was located near the outlet of the tank during 

charging where the HTF has already transferred heat to the upper portions of the tank. During 

discharge, when the flow is reversed, the bottom of the capsule is the first region to come into 

contact with the cold HTF, causing it to solidify significantly faster than the center of the capsule, 

as shown in Figure 4.12. Another reason was the bottom of the capsules were in contact with the 

perforated plate, and the perforated plate was in contact with the whole structure. So it was 

evident that heat was being lost through the perforated plate.  

The exergy and energy were calculated using the charging and discharging inlet and outlet 

temperature data. Equations (1) and (2) were used to calculate the energy efficiency while eq. 

(3) through (5) were used to calculate the exergy efficiency. 

 

𝜂𝜂 𝐼𝐼 = 𝐸𝐸𝐷𝐷𝐷𝐷ℎ,𝐻𝐻𝑇𝑇𝑇𝑇,𝑁𝑁𝑁𝑁𝑁𝑁
𝐸𝐸𝐷𝐷ℎ,𝐻𝐻𝑇𝑇𝑇𝑇, 𝑁𝑁𝑁𝑁𝑁𝑁

           (1) 

𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻,𝑁𝑁𝐸𝐸𝐻𝐻 = ∫ �̇�𝑚𝐶𝐶𝑝𝑝,𝐻𝐻𝐻𝐻𝐻𝐻∆𝑇𝑇𝑇𝑇𝑇𝑇         (2) 

𝜂𝜂 𝐼𝐼𝐼𝐼 = 𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷ℎ,𝐻𝐻𝑇𝑇𝑇𝑇,𝑁𝑁𝑁𝑁𝑁𝑁
𝐸𝐸𝐸𝐸𝐷𝐷ℎ,𝐻𝐻𝑇𝑇𝑇𝑇, 𝑁𝑁𝑁𝑁𝑁𝑁

          (3) 

𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷ℎ,𝐻𝐻𝐻𝐻𝐻𝐻,𝑁𝑁𝐸𝐸𝐻𝐻 = ∫ ��̇�𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝑝𝑝 �𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜ln �𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇,𝑜𝑜𝑜𝑜𝑁𝑁
𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇,𝑖𝑖𝑖𝑖

��� 𝑇𝑇𝑇𝑇𝑜𝑜𝑓𝑓,𝑑𝑑
𝑜𝑜𝑖𝑖,𝑑𝑑

  (4) 

𝐸𝐸𝐸𝐸𝐷𝐷ℎ,𝐻𝐻𝐻𝐻𝐻𝐻,𝑁𝑁𝐸𝐸𝐻𝐻 = ∫ ��̇�𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝑝𝑝 �𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖𝑖𝑖 − 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑜𝑜ln � 𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇,𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇,𝑜𝑜𝑜𝑜𝑁𝑁

��� 𝑇𝑇𝑇𝑇𝑜𝑜𝑓𝑓,𝑐𝑐
𝑜𝑜𝑖𝑖,𝑐𝑐

    (5) 
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The standard deviation was calculated by measuring six trials at the flow rate of 122 m3/h 

and seven trials at 138 m3/h. The two different flow rates had similar heat transfer rates as shown 

in Figure 4.13. The resulting efficiencies of energy and exergy are shown in Table 4.1. The exergy 

to energy ratio was calculated at 89% for both flow rates. This matches the theoretical exergy 

efficiency for this temperature range. The low exergy efficiency of this system of 55% is also a 

result of the losses, in the range of 35-40%. A larger system would have considerably smaller 

losses in respect to its storage size.  

 

 
Figure 4.13 Average temperatures at the center of all capsules from all tests: charging (left); 

Discharging (right) 
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Table 4.1  TES unit performance 

Flowrates 
122 m3/hr 138 m3/hr 

Avg. St. Dev Avg. St. Dev 

Energy Efficiency 62% 1.8% 61% 2.7% 

Exergy Efficiency 55% 1.6% 55% 2.3% 

Exergy to Energy Ratio 89% 0.06% 89% 0.11% 

Charge Energy (kWh) 2.8 0.08 3.0 0.14 

Discharge Energy (kWh) 1.7 0.06 1.8 0.06 

Charge Exergy (kWh) 1.7 0.05 1.9 0.09 

Discharge Exergy (kWh) 1.0 0.04 1.0 0.03 

Charge Losses (kWh) 0.4 0.02 0.4 0.05 

Discharge Losses (kWh) 0.1 0.01 0.1 0.01 

 
4.6 Model Validation 

A numerical model was developed using the methods from Pirasaci et al. [175] and 

validated against the experimental data using MATLAB after extracting the heat transfer 

properties from an ANSYS Fluent model. The enthalpy-porosity approach was used for the 

solidification and melting regions. The following assumptions were made for the analysis: 

• All the PCM and HTF thermophysical properties except thermal conductivity(PCM) are 

constant. 

• Heat capacity effects of the tubes are negligible.  

• The outer wall temperature of the tube is constant. 

• Flow through the tank is uniform. 

The following boundary conditions were applied to the model: 

• The system and the capsules are axisymmetric. 
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• The walls of the tank are adiabatic. 

• The temperature of the heat transfer fluid does not vary across the radius of the tank. 

The model shows good agreement with the data as shown in Figs. 12 and 13. Small 

inconsistencies between the model and experimental data were caused by the thermocouple 

uncertainty and the assumptions that the flow was uniform through the tank and the tank walls 

were adiabatic. 

 

 
Figure 4.14 Modeled and experimental temperatures at the center of capsule during charging 
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Figure 4.15 Modeled and experimental temperatures at the center of capsule during 

discharging 
 

4.7 Improvements and Modifications1 

As explained earlier, due to the bended section (Figure 4.16) in the system, the airflow 

was significantly faster on the outside (outer bend side), near capsule A, than on the inside(inner 

bend) of the system, near capsule D. To make this more uniform or even more center oriented, 

and to minimize the heat transfer losses from the walls, a thorough investigation was conducted 

to study the present flow conditions and neutralize the effect due to bending as many compact 

TES systems come with bent sections [176]. 

 

 
 
 
1 The content of 4.7.1 was published in Moloney F, Wickramaratne C, Almatrafi E, Goswami DY, Stefanakos E, Guldiken R. Flow 
conditioning techniques for a bent pipe in a constrained latent heat storage system. ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 
7, 2016. doi:10.1115/IMECE201665730. Permission is included in Appendix C.  
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4.7.1 Flow Conditioning for the System 

When a fluid, which is fully developed, flows through an elbow, the velocity, and 

subsequently the centrifugal force, is highest at the axis of the pipe. As the fluid passes through 

the bend, the fluid at the axis moves towards the outer bend, creating rotating cells, also known 

as Dean Vortices, perpendicular to the flow [177]. This secondary flow causes the flow to shift to 

the outer bend side of the pipe. In turbulent airflow, Wendt et al. [178] observed that after 2D in 

a straight pipe after a single bend, there was a local minimum velocity at the center of the pipe. 

After 10D, the maximum velocity was located towards the outer bend [178]. It can take up to a 

distance equal to 36 times the diameter (36D) for flow abnormalities to fully disperse after a 

disturbance [179,180]. 

To reduce this distance and redirect the flow, specially designed flow conditioners can be 

installed. There have been many studies investigating various arrangements of flow conditioners 

[178–190]. However, in many cases, it takes more than 10D to improve flow. 

A flow straightener is effective at removing swirl but not at improving the velocity profile. 

Common flow straighteners are tube bundles and straight vanes. A flow conditioner, on the other 

hand, is a device that removes swirl and improves the flow within a short distance. Perforated 

plates are a common type of flow conditioner as they are easily constructed and installed [183]. 

Swirlers are devices that create predetermined disturbances in order to absorb any other effects 

[179]. Ahmadi [179] tested several different innovative designs of swirlers. These were effective 

at improving the velocity profile and the discharge coefficient through an orifice [179]. 

Many different designs of diffuser plate flow conditioners have been tested. The most 

commonly tested ones are the Mitsubishi Heavy Industries (MHI), Spearman (NEL), and Laws 
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plate. Spearman et al. [180,189] tested turbulent flow in water with these three plates in addition 

to an unchamfered and a chamfered Laws plate after a single 90˚ bend. Placing the plate 4D after 

a single 90-degree bend, velocity profiles were measured. The MHI plate was effective at 

removing secondary flows but not at improving the symmetry of the flow [189]. The NEL plate 

performed the best after 3D. The unchamfered and chamfered Laws plate provided suitable 

velocity profiles at 11D and 6D after the flow conditioner, respectively [180]. 

 
Figure 4.16 Coordinate reference to the bend(left), photo of the actual bent section (right) 

 

Shao [191] tested and modeled the flow of water through a straight pipe with a gate 

blocking half of the flow. Computational Fluid Dynamics (CFD) was used to model different 

configurations of Laws plates. The geometry, porosity, and thickness of the plate affect the 

performance of the flow conditioner [191]. 

An alternative way to control the flow through an elbow is to use a twisting vane before 

the start of the bend. Cheng Fluid Systems invented such a vane, the Cheng Rotation Vane (CRV®), 

which causes the fluid to rotate slightly along its axis through the bend [3]. As the flow rotates 
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through the bend, the angle, at which the centrifugal force acts on the fluid in respect to the fluid, 

changes, preventing asymmetrical flow. 

These specialized perforated plates have thus been extensively studied for mild 

disturbances, but not positioned directly after single 90-degree bends to improve flow within 3D 

lengths of a bend with the heated or compressible flow.  

4.7.1.1 Testing Procedure 

In the current system, the air was passed through heaters then through a single 90-degree 

elbow, with a bend ratio of 1.5, followed by an increasing diameter pipe before entering the 

storage tank. The top of the tank was three times the diameter (3D) of the elbow below the bend.  

The tested flow conditioners were installed directly after the bend, before the diffuser 

cone. The rotational vane was placed inside the horizontal pipe directly before the bend. 

Different flow rates were provided by the blower (Dayton 115V, 2860 RPM) which was attached 

to a variable switch. Using an E-Instruments VT 100 anemometer, the velocity was measured 

across two cross-sections at the end of the diffuser cone and before the location of the storage 

tank: in the direction spanning from the inner bend to the outer bend (x-direction) and in the 

perpendicular direction (y-direction). Measurements were taken every one inch at thirty second 

intervals to record the minimum, maximum, and average velocities at each point. Each flow 

conditioner was tested at flow rates of 115 m3/h and 170 m3/h (inlet) in the ambient 

environment, 40˚C, and 60˚C. The temperature range tested was limited by the operating 

conditions of the anemometer. After verifying that the setup contained no leaks, the flow was 

allowed to stabilize at each temperature before measurements were taken. 
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4.7.1.2 Tested Flow Conditioners 

Several flow conditioners were tested (Figure 4.17). The MHI and the Spearman flow 

conditioners were designed to allow more flow through the center of the pipe. The MHI plate 

has 35 holes, all with a diameter of 13% the diameter of the pipe, arranged in a pattern to allow 

more flow through the center of the pipe. The MHI plate was constructed with a thickness equal 

to 13% of the pipe diameter [2]. The Spearman plate was constructed according to its 

specifications with the appropriate thickness (0.12D) [2]. In order to reduce the amount of 

material needed for high-temperature applications, two plates with a thickness of 0.64 mm were 

placed 0.12D apart in a double plate configuration. 

 

Figure 4.17 Flow conditioners: (a) Spearman plate; (b) MHI plate; (c) Laws plate; (d) Graded 
porosity plate; (e) Twisted vane type 

 

(a)                            (b)     (c) 

 

(d)      (e) 
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Additionally, two plates were constructed out of 0.64 mm thick aluminum that provided 

an increasing porosity across its diameter in the direction of the inner bend. A rotational vane, 

similar to the CRV, was constructed out of aluminum. The vanes were twisted by 40 degrees.  

4.7.1.3 Uncertainty Analysis 

The uncertainty of the anemometer was ±0.18 m/s for velocities up to 6 m/s. The 

positioning of the anemometer was within 0.01m in any direction. The Omega k-type 

thermocouples had a manufacturer uncertainty of ±0.3oC in the tested temperature range. The 

thermocouples were also calibrated in a separately closed furnace up to 80oC. 

4.7.1.4 Experimental Results 

For the set operating conditions, 18 readings were recorded (9 each in x  and y-direction, 

for a single flow conditioner. Non-dimensional parameters were used for the analysis and Uavg 

were calculated from all the 18 velocities at that particular setting. The system was first tested 

without any flow conditioners. As evident in Figure 4.18, the flow distribution was skewed to the 

outside of the curve. Along the x-direction, the flow was high near the walls and reduced at the 

center. These trends were evident at all temperatures and consistent with the trends observed 

by Spearman in water at 5D after the bend [2]. Velocity profiles for the lower flowrate were 

steeper and more skewed towards the pipe walls.  

The temperature had very little impact on the normalized velocity profiles in the tested 

range (Appendix B). The vane and graded porosity plates over corrected the flow, directing it 

towards the inner bend (Appendix B). The results of the conditioners that showed promise are 

discussed here. 
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Figure 4.18 Velocity profile for different flow rates with no correction along 

The Laws plate showed symmetrical results in the y-direction, but skewed results in the 

x-direction, as evident in Figure 4.19 (a). The double Spearman plate made the flow more uniform 

and symmetrical than the control experiments in the x-direction (Figure 4.19 (b)). However, the 

velocity profile increased across the y-direction, indicating a swirl or irregularity to the flow. The 

best performing plates were the MHI and Spearman plates. Both plates successfully improved 

the velocity profile across the x and y-directions (Figure 4.19 (c) & Figure 4.19 (d)) and 6d). The 

MHI plate produced more dispersed flow than the Spearman and was found to be the best flow 

conditioner among the tested flow conditioners.   

 Although this system had turbulent flow at the inlet of the bend (Reynolds numbers over 

10,000), the velocity profiles with the Spearman and MHI plates resemble a laminar distribution, 

but this is not a fully developed flow. The flow conditioner restricts the flow, and the diffuser 

cone reduces the velocity. As a result, the peak of velocity profile has shifted to the center of the 

pipe in comparison to the original setup. Numerical models were developed for the flow 

conditioners using ANSYS and verified with the experimental data.  
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Figure 4.19 Velocity profile in ambient conditions: (a) Laws plate; (b) Double spearman plate; (c) 

MHI plate; (d) Spearman plate 
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4.7.1.5 Model Validation 

An ANSYS/FLUENT model was developed using the boundary conditions obtained by the 

experimental setup. All conservation equations including mass, momentum, and energy were 

discretized using the finite volume method. All the cases analyzed show Reynolds numbers above 

10,000, and the standard k-epsilon model was used to model the turbulent flow. Standard wall 

function was used for near-wall treatment. The second order upwind criteria were used for the 

discretization of pressure, momentum, turbulent kinetic energy and turbulent dissipation rate. 

The pressure-velocity coupling was established by using the SIMPLE algorithm. The flow 

resistance from the heaters was not considered. The measured pressure of the tank 

corresponding to the model outlet was uniform throughout the outlet plane. An experimental 

average inlet velocity of  2.46 m/s was used as the model inlet velocity, and the turbulent 

intensity at the inlet was calculated from the Reynolds number at the inlet using the following 

equation. 

 𝐼𝐼 = 0.16𝑅𝑅𝑅𝑅−1/8  

Hydraulic diameter for the inlet was 0.158m. The actual outlet of the experimental setup 

was different than the model created. The pressure outlet boundary condition in the model was 

set to the gauge pressure measured (130 pa), at the storage tank during the experiments. The air 

density was 1.225 kg/m3 and the dynamic viscosity was 1.789e-6 kg/m-s.The converged solution 

contained residuals less than 1e−6.  Grid independence was checked by varying the mesh size 

until the converged results did not vary. The selected mesh had elements in the range of 400,000. 

A three-dimensional tetrahedron variable size mesh was used and had 81310 nodes and 417530 

elements. Grid independence was checked by varying the mesh size until the converged results 
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did not vary. The converged solution contained residuals less than 1e−6.  The average skewness 

was 0.23, and orthogonal quality was 0.85. 

Figure 4.20 shows the velocity distribution along the XZ plane. At 3D after the flow 

conditioner, the velocity is more dispersed and is between 1 and 2 m/s. 

 
Figure 4.20 Velocity profile along XZ plane for MHI plate 

 

The model shows a reasonable agreement with the experimental data in the x and y-

directions, as evident in Figure 4.20. The model slightly overpredicted the maximum velocities 

for the Spearman plate.  
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Figure 4.21 Model vs experimental velocity profiles for: (a) Spearman plate; (b) MHI plate 
 

4.7.1.6 Conclusions from the Experiment 

For TES, ensuring that the maximum flow is at the center of the tank minimizes heat loss 

through the walls, thus improving the efficiency of the system. The MHI and Spearman plates 

both significantly improved the velocity profiles of the air flow after 3D from the elbow. Both 
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plates produced a maximum velocity near the center of the pipe as opposed to along the outer 

wall. The MHI plate produced more dispersed flow than the Spearman.  

More testing should be performed with these flow conditioners to analyze the effect of 

temperatures between 300oC and 500oC on the velocity profile. Further investigation of a double 

Spearman plate constructed with two thin plates should be performed to optimize the distance 

separating the two plates, thus reducing the amount of material and cost in respect to a standard 

Spearman plate. The optimal orientation of the graded porosity plate can be further investigated 

to produce a symmetrical velocity profile.  Additionally, the heated flow can be modeled in CFD 

to predict the flow distribution for elevated temperatures. 

Finally, MHI plate was machined using carbon steel and installed in the system to 

neutralize the flow irregularities  

4.7.2 Discharge Heater Addition 

To address the limitation in the discharge temperature, a 2kW Sylvania brand air heater 

was added to the discharge heater bank. Additional housing was added to the compartment due 

to the limitations of the spacing availability. With the new discharge heaters expected symmetric 

operating conditions (20oC above and below the melting point) were achieved for the selected 

flow rates.  

4.7.3 Radiation Shields 

To reduce losses due to radiation, radiation shields were added to the bent and cone 

sections of the system. The added systems were designed and manufactured in-house by thin 

polished aluminum sheets.  
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Figure 4.22 Design of radiation shields for bent (top left), cone (top right) sections and the 

actual picture after installation(bottom) 
 
 

4.8 Results of the Modified System 

Comparing the data with the earlier configuration, temperature variation across the bed 

(radial variation) was significantly reduced (Figure 4.23). This was a result of the flow 

conditioning. Melting time difference of A and D capsule, which was as large as 2 hours for the 

previous system, was reduced to 20 minutes.  
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Figure 4.23 Capsule center temperature during one run at 138 m3/h for the modified system 

 
 
 

 
Figure 4.24 A(Left) & D(right) comparison of earlier and modified system 
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Even though the system was modified, the improvements were not reflected in the data. 

The overall full cycle efficiency did not increase. This is mainly a result of the narrowing down of 

the operating temperature in the discharge cycle. As explained earlier, the discharge cycle took 

little more than one and half hours to stabilize when it was operating between 535oC and 380oC. 

So during the solidification, which was the major part of the discharge cycle, the heat transfer 

was happening between 515oC (phase change temperature of the PCM) and 380oC (set discharge 

temperature) temperatures. In the case of the modified system, the charging and discharging 

temperatures were set for 20 degrees above and below. During the solidification, the heat 

transfer was happening between 515oC and 495oC temperatures, and the difference is small 

(20oC) compared to an earlier difference of 135oC. As a result, the discharge cycle was taking 

more than three and half hours to stabilize. The total charge-discharge cycle duration was 

increased compared to the earlier conditions. Total time increase for the full cycle was 

considerably large and in the range of close to 30%. The effects of modifications were nullified 

by the extension of cycle time. As a result, the full cycle overall heat loss was high in the modified 

configuration. However, the exergy to energy ratio of the modified system was around 98% which 

was a drastic improvement from the earlier value of 89%. 
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CHAPTER 5: PROPOSED NOVEL THERMAL ENERGY STORAGE SYSTEM 
 

Spherical shaped PCM capsules have shown better heat transfer properties compared to 

cylindrical systems [192]. In the past, several numerical studies were done for the spherical shape 

EPCMs [193–196]. Archibold et al.[197–199] investigated the melting and solidification of 

spherical capsules in high-temperature range LHTES applications. Only Zheng et al. [41] reported 

an experimental fabrication of spherically shaped capsules for high-temperature PCM 

applications.  He fabricated spherically shaped capsules of 2mm diameter with copper as the 

PCM. Shell material was made from a combination of chromium and nickel, which were 

electroplated to a thickness of 100 μm and 500 μm respectively. The capsules successfully 

survived for 1000 thermal cycles, but this process of electroplating nickel and chromium is 

expensive.   

In the case of cylindrical capsules, the fabrication process is much simpler because of the 

commercial availability of premade cylindrical tubes. The lab-scale LHTES system described in 

chapter four was with cylindrical capsules. But the system initially (before implementing flow 

conditioners) showed uneven heating inside the tank due to the flow irregularities. With a 

packed-bed spherical setup, flow irregularities would have been comparatively small as these 

irregularities typically get dispersed due to the packing arrangement.  But the fabrication process 

of spherical capsules is not as straightforward as the cylindrical capsule. The goal of the new 
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design is to get the benefits of the spherical shape capsules and incorporate into a bulk- 

manufacturable design.  

5.1 Stress Development and Optimization of Thickness 

It is essential to optimize the thickness of the capsule to minimize the cost considering 

the operating conditions.  This LHTES design was focused on a high pressure and high-

temperature application. Temperature range of 500 - 600oC and pressure of 50 MPa were 

selected as the operating conditions. Pressure calculation comparing with the common 

cylindrical configurations were carried out and is given in detail in the appendix B. The material 

chosen was again Ni-coated carbon steel. The thickness was selected considering conservative 

conditions.  Yield point (370 MPa) was considered in determining the thickness rather than the 

ultimate tensile strength of carbon steel. The safety factor selected was 1.5.  For the selected 

conditions, a thickness of 1.5 mm was sufficient for a 1” inch (25.4 mm) diameter capsule. In the 

case of a cylindrical capsule, hoop stress was twice that of spherical and therefore capsule 

thickness was increased to 3mm for the same operating conditions. Axial stress for this is low, 

and the failure stress was due to the hoop stress. So it was evident that encapsulation material 

requirement was larger for the cylindrical case.  

5.2  Proposed Design 

This design was modeled using Solidworks as shown in the figures. The plate thickness 

considered here is 1.5 mm, and this thickness can be easily pressed and formed. Figure 5.1 shows 

a carbon steel sheet of many hemispherical shapes. Spherical salt pellets of Na2SO4-KCl or any 

PCM that melts in the range of 500oC to 600oC are placed on a multi hemispherical shaped sheet 
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(Figure 5.2). An identical but inversed metal sheet is placed on top of the capsules and welded to 

the other sheet with a fusion welding mechanism.   

 
Figure 5.1   Two identical sheets of multi hemispherical shapes 

 

 
Figure 5.2   Spherical salt pellets placed on the multi hemispherical shape sheet 

 
 

 
Figure 5.3   Closing with the same type of hemispherically pressed sheet 
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5.3 LHTES System 

A LHTES system of these capsules is similar to a spherical capsule packed bed system 

(Figure 5.5). The only difference is caused by the secondary flows generated inside the packed 

bed. The secondary flow of the sheet capsules, even though the shapes are same, are limited by 

columns of the sheet (Figure 5.4). Therefore, dispersion of flow unevenness in the tank is 

restricted. In this system, it is essential to have a certain amount of flow uniformity at the inlet 

unlike a case of packed bed system. As we already experienced a case of flow unevenness in a 

lab-scale LHTES system (chapter 4), we can tackle this problem with the use of flow conditioners. 

MHI plate or CRV vane type flow conditioner can be used if the flow entering the LHTES system 

is uneven.  

 

 
Figure 5.4   Layered arrangement 
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Figure 5.5   Packed bed setup 
 
 

5.4 Method of Manufacturing 

Carbon steel is an inexpensive material, and sheet metal forming is a well-established and 

low-cost technology. A die is needed for pressing and forming the hemispherical shapes. High-

speed steel (HSS) is a good affordable material for the die. The ductility of carbon steel is high 

and a surface hardened die of HSS can produce a very large number of pressed sheets.  

Spherical salt pellets can be made with cheap polyvinyl chloride (PVC) molds. In the post-

formed encapsulation explained in the chapter 3.5.1, the method of making the salt pellet was 

with the use of a PVC mold and a press machine.  

Welding and sealing process should be done in a low pressure environment. An argon or 

nitrogen high environment is also suited for this. This is to ensure that sealing happens in a low 

oxygen environment, in order to prevent corrosion inside the capsule when the salt is molten. If 

the length of the sheet is long, the fusion welding machine should either be large or should allow 
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part by part welding. It is essential to optimize the size of the sheet especially considering this 

process. If the requirement is for large sheets, an extra joining process can be added rather easily 

without complicating the welding and sealing process. As the final step, 150 μm to 200 μm thick 

nickel is electroplated for additional protection. 

This method can be easily adopted for low-temperature PCMs without nickel 

electroplating. Industrial scalability of the mentioned process is considerably high compared to a 

spherical capsule fabrication process. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 
 

6.1 Summary and Conclusion 

The main focus of this study was to examine and develop a reliable LHTES system for high-

temperature applications. Lack of research on LHTES systems and PCM containment methods for 

temperatures above 500oC has driven the study to find a reliable encapsulation method for PCMs 

for temperature above 500oC, and experimentally investigate the performance of a high-

temperature LHTES system.  

Macro-encapsulation techniques were developed for two temperature ranges: 500oC – 

600oC and 600oC above.  Three different PCMs; NaCl (801oC), NaCl-KCl (657oC), Na2SO4-KCl 

(515oC), were investigated and tested for compatibility with macro-encapsulation.   Low-cost 

ceramics with excellent chemical stability under molten-salt conditions were selected as the 

encapsulants for NaCl and NaCl-KCl eutectic. An optimum ceramic composition, feldspar (50%), 

kaolin (16.67%), 16.67 ball clay (16.67%), silica (16.67%), was identified after several 

experiments. The processing procedure for these materials was discerned by systematic studies 

of porosity distribution and materials compatibility. The ceramic materials, when sintered at 

800oC, reacted with molten NaCl, whereas the same ceramic composition, when sintered at 

1190oC, did not show any reaction with the molten NaCl. Ceramic capsules were fabricated and 

sintered at 1190oC, and the desired PCM was poured into it through a hole.  
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A novel technique of sealing was introduced through in-situ layered eutectic formation. 

Sealing was done at a temperature above the eutectic melting point of the salt mixture but below 

the individual melting points of each salt. The fabricated capsule survived more than 500 thermal 

cycles without showing degradation in their thermo-physical properties. Alumina (99%) based 

capsule of NaCl-KCl was tested successfully for 1000 thermal cycles with a PCM weight loss 

percentage of less than 5 %.  Based on these results, it can be concluded that the developed 

ceramic materials have good potential for use in high temperature (>500 oC) LHTES applications 

A lab-scale packed-bed system was designed and developed to investigate an industry 

scalable LHTES system suitable for supplementing heat to a steam-powered cycle. Metallic 

cylindrical capsules were filled with a eutectic of sodium sulfate (Na2SO4) and potassium chloride 

(KCl) as the phase change material (PCM) for energy storage. The system consisted of a cylindrical 

storage tank with the cylindrical capsules arranged vertically.  

The system showed flow irregularities due to the presence of bent sections. Several flow 

conditioners were experimentally tested for the making the flow uniform. The MHI and 

Spearman plates both significantly improved the velocity profiles of the air flow after 3D distance 

from the elbow. Both plates produced a maximum velocity near the center of the pipe with MHI 

showing slightly more dispersed flow than Spearman. ANSYS model was developed to investigate 

different flow conditioners. The model had a good agreement with the experimental data. 

An innovative spherical shaped multi pack design was proposed for large-scale 

manufacturing. A new technique was proposed while adopting the benefits of the spherical 

capsules and reducing the manufacturing difficulties. The adoptability of this technique for higher 
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or lower temperature LHTES applications depends on the properties of the selected sheet metal. 

Any formable metal sheet can be used considering the compatibility with PCM and HTF.    

6.2  Future Work 

Future work on ceramic encapsulation should focus on PCMs melting around 1000oC. 

Sintering using very high temperatures (over 1300oC) and low dwell times, while not increasing 

the processing energy, needs to be analyzed.   

The effect of temperatures over 500˚C on the velocity profile can be investigated to 

improve the flow irregularities in a compact system. Further investigation of a double Spearman 

plate constructed with two thin plates should be performed to optimize the distance separating 

the two plates, thus reducing the amount of material and cost as compared to a standard 

Spearman plate. The optimal orientation of the graded porosity plate can further be investigated 

to produce a symmetrical velocity profile.  Additionally, the heated flow can be modeled in CFD 

to predict the flow distribution for elevated temperatures. 

For the proposed new spherical shaped PCM design, the process of vacuum or low 

pressure welding needs to be investigated. Embrittlement, creeping and graphitization of carbon 

steel at elevated temperatures should be further analyzed for temperatures above 500oC.  
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APPENDIX A: NOMENCLATURE 
 

A.1 Acronyms 

PCM  Phase change material 
TES  Thermal energy storage 
LHTES Latent heat thermal energy storage 
SHTES Sensible heat thermal energy storage 
EPCM Encapsulated phase change material 
HTF  Heat transfer fluid 
HP   Heat pipe 
TTHX   Triplex tube heat exchangers  
EG  Expanded graphite 
MWCNT  Multi-walled carbon nanotubes 
GNP   Graphene nanoplatelets 
FTIR  Fourier transform infrared spectroscopy 
TGA  Thermogravimetric analysis 
DSC Differential scanning calorimetry 
EDS Energy Dispersive Spectroscopy 
IR  Infrared Radiation 
TIG Tungsten inert gas 
CFD Computational fluid dynamics 
MHI Mitsubishi Heavy Industries 
CRV  Cheng Rotation Vane 
NaNO3  Sodium nitrate. 
KNO3  Potassium nitrate 
NaCl  Sodium chloride 
KCl  Potassium chloride 
Na2SO4  Sodium sulfate 
Ch  Charge 
DCh  Discharge 
Cp   Specific Heat 
E   Energy (kJ) 
Ex  Exergy (kJ) 
ṁ  Mass Flowrate (kg/s) 
t  Time (s) 
T  Temperature (K) 
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Wt  Weight 
hrs  Hours 
To  Ambient Temperature (K) 
D  Diameter 
I  Turbulence intensity 
Re  Reynolds number 
u  velocity (m/s) 
Uavg  Average velocity (m/s) 
X  Distance from pipe center along x-direction (m) 
Y  Distance from pipe center along y-direction (m) 
 
A.2 Greek Letters 

η  Efficiency (%) 
ρ  Density (kg/m3) 
μ  Dynamic viscosity (kg/m-s) 
σrandom  Random Error 
σsystematic Systematic Error 
ԑ  Void Fraction 
 
A.3 Subscripts 

i  Initial 
f  Final 
avg  Average 
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APPENDIX B: SUPPLEMENTAL INFORMATION 
 

B.1 General Equations for Stress Calculations 

σaxial = (pi ri2 - po ro2 )/(ro2 - ri2)           (1) 

σhoop = [(pi ri2 - po ro2) / (ro2 - ri2)] - [ri2 ro2 (po - pi) / (r2 (ro2 - ri2))]        (2) 

σradial = [(pi ri2 - po ro2) / (ro2 - ri2)] + [ri2 ro2 (po - pi) / (r2 (ro2 - ri2))]         (3) 

where, 

σaxial = stress in axial direction  

σhoop = stress(hoop) in circumferential direction 

σradial = stress in radial direction 

pi = internal pressure  

po = external pressure  

ri = internal radius 

ro = external radius 

r = radius to point in cylinder wall (ri < r < ro) 
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B.2 Stress Comparison of Cylindrical and Spherical Capsule  

Table B.1 Stress calculation for cylindrical and spherical capsule 

 
 

 

 

 

 

 

  

Outer diameter 1.00 Inch
Inner diameter 0.88 Inch
Cylinder Length 100 cm

Capsule Thickness 0.15 cm
Cylinder Outer radius 1.27 cm
Cylinder Inner Radius in cm 1.12 cm

Radius (inner)/thickness ratio 7.47

Elastic limit (Yield stress) 370 MPa

Poisson's Ratio 0.29

Tensile Strength, Ultimate 540  MPa
Density 7.87  g/cc

Modulus of Elasticity 200 GPa

Ouside Pressure(P-out) 50.00 Mpa

Inside pressure(P-in) 0.10 Mpa
R-out= 0.0127 m
R-in 0.0112 m

Maximum Stressv point 0.0112 m

Circumferencial(Hoop) stress - cylinder -449.10 Mpa
Axial Stress - cylinder -224.60 Mpa
Hoop stress in same Dia Sperical capsule -224.55 MPa
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B.3 Sealing Pressure Calculation 

Table B.2 Sealing pressure calculation 

  

For PCM of NaCl Amount Unit
Capsule inner Diameter 1.00 Inch

20050 2.54 cm
Capsule Volume 8.58 cm^3
Room temperature 25.00 C
PCM density at room temperature 2.13 (g/cm³)
Initial pressure 1.00 atm
Density at melting temperature 1.56 (g/cm³)
Maximum mass that can fill (0% void when in liquid) 13.35 g
Necessary void 26.95%
Void space kept @ room temperature 30.00%
PCM Volume @ room temperature 6.01 cm^3
Air volume @ room temperature 2.57 cm^3
PCM mass in the capsule 12.79 g

PCM sealing temperature 25.00 C
Density at sealing temperature 2.13 (g/cm³)
PCM volume at sealing 6.00 cm^3
Ceramic capsule expansion 0.00 cm^3
Total Capsule volume at sealing 8.58 cm^3
Air volume at sealing 2.58 cm^3

highest temperature(Cycling) 830.00 C
Thermal expansion coefficient of ceramic 7.00E-07 /C (Alumina)**
Ceramic capsule expansion 0.01 cm^3
Total Capsule Volume @ highest temperature 8.59 cm^3
PCM Volume at highest temperature 8.22 cm^3
Air Volume at highest temperature 0.37 cm^3
PCM volume increase 36.9%
Final Air volume 0.37 cm^3
Total air volume reduction 85.5%

Gas Constnat(m) 0.2869  J/(g. K)
Gas Constant(n) 8.3144598 J/(mol.K)

Air mass initially 0.003051 g
N2 mass 0.002318 g
O2 mass 0.000732 g
Air mass at sealing 0.003056 g

Final Pressure 2593043.40 pa
25.59 atm

25.59 pv/t method
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g
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g
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B.4 Additional Flow Conditioning Data 

  

 
Figure B.1  Velocity profile for heated flow (x and y direction) with no corrections 
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Figure B.2 Velocity profile in ambient conditions along x-direction (X/D) with: (A) Low graded 

porosity plate; (B) High graded porosity plate; (C) Twisted vane  
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APPENDIX C: COPYRIGHTS 
 

This is the copyright permission given by Elsevier for figure 2.1 in section 2.2.1.  
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